Y]

REPLAY II
BY

MICRO ANALYST INC.

COPYRIGHT
1983

V2.0

4

APP

A.

BO

INDEX
INTRODUCTION cveeeeooscacscscccanonncecsesld
REPLAY CARD INSTALLATION. .. eeeeeecceoaseasdb
MAKING A COPYiteesocascococssnsccceooeesldd
MONITOR . ceccescessccasosssssacosscacseseceldd
EXECUTE REPLAY COPY:teoosececooancaoceaseal?
VIEW SCREEN.:eeeoeseeccossccossccccococsasl2
CREATE DOS BINARY FILE..eeoccoecanaooasesll
64K COPIES.eiesoeacseoccossesoocassnsosalB
PACKER PROGRAM.ccececsecscossesccacnasaal?
PACKING PARAMETERS .cceeecccccccsccccasesl?
TIPS ON COPYING AND PACKING.:eeooesoesaeodl
PACKING EXAMPLES .eeececescscsscccncsaassd?
COMPARE PROGRAM.::vvececcccsascocnconeseed?
COMMAND FILE CREATE.eeevscccccccoessasesd8
SOFTMOVE ¢ e et eceosesoncssccscssnaccscnseseadd
ENDIX
EXTRA USES FOR THE REPLAY CARD:veveesaasesdl
MULTI ACCESS PROGRAMS..eecescesccccccsceead3
DOS COMPARISONS:eeeseacossccosccosconsecesbd
HEX NUMBER SYSTEM:csevececscscaccscoscsnesesbdd
REPLAY TRACK REFERENCE..ceeeccccevoscccocceedd
APPLE LANGUAGE CARD OWNERS . ceeecoscsssscsessbb
ASSEMBLY REFERENCE GUIDE..:.eeecocococceess56
RAMSTEP.«.STEP & TRACE.euiceseesocscacnscsebl
SCREEN PRINT .cceceoccocccssscsscccocsoceeebl
II+ and //e DifferencCeS.iceeceecececsccecsesabd

FRANKLIN 1000 USERSc..ceeccesssoscnascccceesbb

Page 2

Page 3

The REPLAY COPY card is guaranteed for 90 days after
purchase. All parts and labor are under warranty. If a

problem develops in hardware return the card to MICRO
ANALYST for repair.

REPLAY COPY is for archival backup and program
analysis. MICRO ANALYST takes no responsibility for the
actions taken by users of this card.

MICRO ANALYST INC.
P.0. BOX 15003
AUSTIN , TEXAS 78761

(512) 926-4527

Page 4

1.0 INTRODUCTION

The REPLAY card can be used for several purposes.

1. Copying programs
A) Converting to standard DOS 3.3
B) Unprotection for execution on APPLE //e or II
¢) Transferal of protected programs to hard disk

2. Program development and analysis
A) APPLESOFT pointers
B) Machine language analysis

With the current Replay eprom you can copy a program in
either the lower 48k or the entire 64k of memory. No data
compression is used in order to insure maximum reliability
of copy and restart.

There are other functions of the Replay card. When the
Replay card is used to stop a program all of the memory is
conserved. NOT ONE SINGLE BYTE IS CHANGED. The user may
examine/change/search memory with a monitor in the Replay
eprom. While the user is doing this memory is still
preserved. NOTHING is changed unless the user so specifies.
You can then restart the program, either 48 or 64k .
Applesoft pointers are displayed with their current values.

The program development and analysis functions will be
expanded in the future. New eproms dedicated to special
analysis are being developed. The current card gives the
user some power in that area but specialized eproms will
enhance that capability.

Replay can be left in the system and forgotten about
until needed. When a copy or analysis is desired simply
press the button on the end of an 18" cord outside the
computer.)

The minimum requirement for Replay is an APPLE II or
//e with. one disk drive. All standard 16k ram cards are
compatible. If a larger ram card emulates a 16k ram card it
is also usable. Owners of the APPLE language card with an
$F8 Rom on board see appendix F

The following are trademarked or copyrighted names used in
this document:

APPLE/APPLESOFT/LOCKSMITH/TURBODOS/NIBBLES AWAY II
/REPTON/INSPECTOR/DR. WATSON/VISICALC

Page 5

2.0 REPLAY CARD INSTALLATION

Turn off the power to your APPLE. Remove the 1id and
locate the interface slots in the back of the computer.
Replay can be put in any slot, The only requirement is that
the disk controller card be in slot 6. Insert Replay into
any slot, run the cable out the back of the APPLE, and
replace the 1lid.

x** NEVER PULL HARD ON THE CABLE Xx

Pulling on the cable can have disastrous consequences,
especially if the power is on.

To trigger the Replay card simply press the button on
the cord. If power is on the Replay menu will be displayed
immediately. We recommend never pressing the button during
disk I/0 as this may destroy the data on the disk!!!

3.0 COPY PROGRAM

3.1 Short Example

Boot a disk with DOS 3.3. When you have the Applesoft
prompt type the following lines:

NEW
140 PRINT"HELLO"; :GOTO 10

Once these lines have been entered type 'RUN'. The
screen should £fill up with the word HELLO.

Now press the Replay copy button on the cord. The
program will stop and the upper 10 lines of the screen will
contain a menu. The menu is described fully in the following
sections. For now we will use only option C. Type C on the
keyboard and the screen will display a new menu. The prompt
asks you to remove the DOS 3.3 disk in drive 1 and insert a
blank disk. When you have done this hit return. Your
original program will then be copied onto the disk in drive
1. This is the Replay quick load copy. When it is completed
the main menu will return.

You have now made a copy of the program. You may exit
the Replay system by either typing R to restart the
interrupted program or by hitting reset to turn off the
Replay card.

To execute the copy you have just made press the Replay
button; when the menu comes up type E for execute. Make sure
the Replay quick load copy disk is in drive one. Try this
with the copy you have just made. Once the copy is back in
memory the program will restart. For more detailed
description proceed to section 3.2.

Page 6

3.2 Full Copy Procedure

Boot the program you wish to copy. When the program is
in and running you are ready to copy it. At any point you
can press the Replay button and the program will stop. A
good place to copy your program is at a menu.

When you press the button the following menu (shown
below between the stars) will appear in the top 10 lines of
the video screen. If you are using 86 column card you will
have to use the 40 column APPLE video when working with
REPLAY. If your monitor or tv cable is run through an 80
column board then you will need to hook directly into the
APPELE 40 column video connectors. The program can be
restarted in 86 column.

This is the Replay menu showing your current options.

If you hit the first letter of any of the commands it will
execute,

Fhkhkkhkhkhhhhkkhkkhkhhhhhhhkkhkhhhkhkddkdkhkkikkik

<*> REPLAY II <*> The //e version
will not have the
C) COoPY V option as the
M) MONITOR screen is set by
B) BOOT 16 SECTOR Replay card.
E) BOOT REPLAY DISK

R) RESTART

V) SCREEN (1) §S) RAM/ROM/SLOT ()
L) VIEW SCREEN

khhkhkhkhhkhhkkhkhkhkkhkhdkhhhkhhhhkkhhkkdkkdkddhddhkxk

Beneath this menu is blank space or a lot of garbled
letters will be present. Some programs put part of their
operating system in the video page and you will see the
memory of that page being displayed. Replay has extra memory
buffered (added) so that nothing is changed by your
interruption. However there is only enough memory to buffer
16 lines of text on the video page. Those ten lines are
saved and then the Replay menu is displayed.

The first option C) is used to copy the current

program. When you press C the following prompt will be
displayed:

khkkkhkdkhkhhhhhhhhhkkkkhhhhhrhhkkkkdkkdkkhi
SCREEN AND CARDS SET?

REMOVE PROGRAM DISK

PUT BLANK DISK IN DRIVE 1

TO COPY =>HIT RETURN. OR HIT N FOR MENU

dkkhdhkkddkdhkdkkdkdkdkdkkdkddkikkkkkkkkkkiki

1.M.”“Liﬁ{

Page 7

The first line is in reference to the video screen and
any interface cards you want turned on when you restart the
program. Section 3.2.1 will describe this first step,
selecting the correct screen, in more detail. Section 3.2.2
will cover the interface cards in more detail.

3.2.1 Setting restart screen.

When you pushed the button to interupt the program
Replay has no means of knowing what video screen was being
displayed. Repay will assume text page l. That is what is
meant by the (1) in the option 'V) Screen (l)' of the main
Replay card menu. If any other screen is desired upon
restart you must tell Replay that. To do so use option V).
When you do so the menu below will be displayed:

Jo Je de J Je e gk de de de de kK de g de do do e de Fe K K de de ke ko ok ok ok ok ke ok ok koK ok

VIDEO PAGE: The //e version

is abbreviated.
1 TEXT1 2 HIRES1 3 TEXT2

4 HIRES2 5 HIRES&TXT1 6 LORES1

7 LORES2 8 LORES1&TXT1"

% Je de de de de de dede de e de o K de de ke Kk de ek ok ke ko e de ke de ok ok ode kokode ok ok ok

For instance if a game was being played hires page 1
was probably displayed at time of interrupt. When you
interrupt the game type V; then by typing 2 the program will
restart in HIRES 1.

When the program restarts hires 1 will be displayed
instead of textl (the default choice). Any screen can be
selected for display on restart.

Page 8

3.2.2 Ram/Rom/Slot restart setting
When you selected 'C' for copy the menu said:
SCREEN AND CARDS SET?

You have just seen how to select the screen. Now the
other option is for interface cards. You may wish to have an
interface card initialized when the program restarts. To do
s0 select S from the main menu. The following menu will
appear:

khkkkhhkhhhkdhhhhkhhkhhkhkkhhkkhkhkkkkkhhkkhkhdhkkkkx

ENTER SLOT #1-7 OR....

FOR RAM CARD A) BANK1 WRITE ENA
B) BANK2 "
C) BANK2 WRITE PRO
D) BANK1 "

e e de dede de de de e de ke de dk de de de de gk de e de ke Kk de e de de g ok gk ke Kok ok

If you want an interface card initialized type the slot
number it is in. If you want the RAM card (language card) on
when the program restarts select options A,B,C OR D. The 4
alphabet selections are the different modes the ram card can
be turned on. Most programs that use the ram card use bank 2
and ram card write enabled. Thus option B would be chosen.

Replay assumes ram card off and no slot initialized.
Option S on the main menu can be used to choose the desired
restart configuration. The parenthesis next to RAM/ROM/SLOT
indicate the restart configuration. For instance if the user
chose option B) bank 2 write enabled, and slot 3 initialized
then the prompt line would look like:

V) SCREEN (1) S) RAM/ROM/SLOT (B 3)

Once the restart screen and the interface slots are
correct you can proceed to copy. Press C to copy the
program. Remove the program disk and place a blank disk in
drive 1. Press return and the copying will start.

When the copying is finished the main Replay menu will
return. Memory has been preserved and you can restart the
program if you desire. Typing R will restart the program.

The copy you have just made is a quick load copy of the
lower 48k of memory. This copy on disk can be reloaded to
restart programs in the lower 48k in under 14 seconds. It
can be executed by the Replay card. (see section V) If you
wish to convert it to standard DOS 3.3 please see section
7.8. To make 64k copies see section 8.4.

Another option of the main Replay menu is the Monitor.
It is described next.

1

Page 9

4.9 REPLAY MONITOR

The Replay card has a monitor built into it. When you
stop the program by pressing the Replay button the main menu
is displayed. By pressing the M key you can enter the
monitor. The following menu is displayed.

khkhkhkhhhhhkhkhhdhdkhkhhhhdhhdhhddkhkhkhxkkhkkxhkhx

<*> REPLAY MONITOR <*> PC=XXXX
ON STACK=xxXX XXXX HOOK IN=xxxXx OUT=xXXX

A=xX X=XxX Y=xXXx SP=xx
» SV*BDIZC
$3F2 RESET VECTOR=xXxXX STATUS=XXXXXXXX

M,P,L,S,W,Q,#/#,#.4W, #:4,#%:'A>

ddededodedh dododdkdedoddokdddddkohdkododokokokokokokdkkkkkkkx

The x's are replaced with the values found by the
Replay card at time of interrupt. The current program
counter is displayed PC=xxxx. On the second line are the
first 4 bytes on the stack. They are displayed as two return
addresses. The first address after the = sign is where the
computer would start executing if an RTS was executed. On
the same line is the input (KSWL) and output (CSWL) hooks.
These are the I/0 input and output hooks used by the monitor
for keyboard, video..etc. These hooks may or may not be
valid. It will depend on the program executing. They are
memory locations $38 and $36 respectively.

The third line displays the registers and their value
at time of interupt. The fourth line is the reset vector,
stored at $3F2. This contains the location in memory where
the computer would jump to when the user presses the RESET
key. Further along the same line the processor status is
expressed in binary. The flags are documented above the
binary output. See a 6502 assembly language manual for more
information.

The final line is called the command line and it is a
list of possible commands with a prompt '>' at the end. The
different commands and examples are listed below:

Page 10

MONITOR COMMANDS

(M)

Display the screen as described above.

(L)

Display memory as hex and ASCII. Eight lines of 8
bytes each will be displayed. Once the first 8
lines are shown the computer will wait for a
keypress. If a return is hit the computer displays
the command line. Any other keypress will display
8 more lines of memory. For example:

200L show memory starting at $200
L show memory starting at last referenced

address

(8)

This will display only 1 line of 8 bytes of

memory.

4E0S Show 8 memory bytes at $4E0@
S Show 8 memory bytes at last referenced

address,

(W)

This command will set one entire page of memory to
the value stored at $AC. This is useful in finding

what areas of memory
user can selectively
restart the program.
area was not crucial

190W Clear page
@5W Clear page

are used by a program. The
clear areas of memory and

If it still runs then that
to program operation.

at address $100
zero, Notice the high byte of

the address is the page to clear. If you
enter a number <$100 then zero page is

cleared.

1300.1500W Clear memory pages $10 through $15
W Clear the memory page of last referenced

address.

()

This is used to store an entered byte to a
specific memory address.

100:05 store $05 at address $100
2EQ:FF store SFF at address S$2E@
4E@:'A store ASCII A at address S4E0

(/)

This is used to search memory for a specific
value, First you store the value to search for at
address $0000. Then you enter the address to start
the search, enter a /, then enter the number of

pages to search.

P 1%

Page 11

3:95 store $U5 at $0000

0400/1 search starting at $400, search 1
page. Print all addresses containing $@5
0860/2 search starting at $800, search 2
pages forward.

See the section on extra uses for the Replay
card for more info.

(P)
This instruction displays the APPLESOFT pointers.
These pointers are only valid if an APPLESOFT
program was running at time of interrupt. The
following screen is displayed:

Thkkhkhhkdkhkhkhkkhkkhkhkhhkhhkhhkhhkhkkkhkxkkkkkdhkk

<*> APPLESOFT POINTERS <*>
PROGRAM START ($67)=xxxX END (SAF) =xxxX
VARIABLE END=xxxXx STRING END=xxxX

FREE MEM=xxK CURRENT LINE=xXxXxX

Khkhkdedddeddokokdokodddhodohdkddkodkdedkddhdhkdkkdkkkkk

All of the numbers displayed are in hex. The program
start and end values are shown. The next line is where
variables end and strings begin. The space between these two
values is free memory and is displayed in Hex on the next
line. Also shown in hex is the current line number that the
program was executing when you stopped it.

See also section 15.8 for moving APPLESOFT programs to
standard DOS 3.3.

When you interrupt the program running the two lowest
pages of APPLE memory are moved up to extra buffered memory
at $CC@U AND $CD@@. Page zero is stored at $CCO@ and page 1
at SCD@@. So any searches/changes for zero page should be
performed at that location. When the program is restarted
these pages are moved back down.

To obtain the monitor program counter and register
values type M. This completes the Monitor commands.

Page 12

ENTERING APPLE MONITOR

The user can enter the regular APPLE monitor by the
following method.

1. Stop program with replay card.
2. Enter Replay monitor with M command.
3. Note the value of the PC
4. At PC value in memory install following patch=> 4C 59 FF
5. When you restart the program you will enter the APPLE
monitor
example:

PC=$2400 when you stop the program.

From Replay monitor type: 2400:4C (return)
2401:59
24Q92:FF "
Q " exit to main
menu
From Replay main menu hit R to restart
and enter APPLE monitor.

5.0 EXECUTE REPLAY COPY

When you make a copy with the Replay card the disk you
create contains a copy of the lower 48k of memory in a quick
load format. This is not a standard format such as DOS 3.3,
The Replay card can execute this disk or it can be converted
to DOS 3.3 and run without the Replay card. This will be
covered in section 6.0.

To restart the program simply turn on the Apple, and
press the Replay button. You don't need to have DOS active
to restart the program. Once the Replay menu is on the
screen insert the disk that contains the quick load copy and
press E. The disk will load in and the program will restart.

To convert the copy into a standard DOS 3.3 copy see
section 7.9

6.8 VIEW SCREEN

One last option of the Replay menu on the card is to
view any screen. Type L to look at any screen able to be
displayed by the APPLEII. Select the screen to view from the
option list, when finished hit any key and the screen will
revert to the Replay menu.

The screen option list is shown on page 7. The //e
version is abbreviated.

Page 13

7.8 CREATE DOS 3.3 BINARY FILES

The copy made by the Replay card is in a nonstandard
fast load format. If you wish to have a copy in DOS 3.3
this program will convert the Replay copy into standard DOS
3.3.

Two binary DOS 3.3 files will be automatically created
for you. These two files together are the copied program.
They can be put on Hard disk or moved to any DOS 3.3 disk. A
language card must be in the system for the program to
restart.

To make the conversion run DOSMAKER supplied on the
utility disk. This is option 2 on the Replay utility disk
menu. The following menu will appear:

kkkkkhhkhhkdhhhkhkhkdhhhkhkhkhkhhhhhkkhhkhkhhkhkhkhdkdhkk

REPLAY II

ORIGIN DRIVE=>1
TARGET DRIVE=>2

TRANSFER 48K COPY INTO DOS 3.3

OPTIONS:

T) TRANSFER
C) CHANGE SOURCE/DESTINATION DRIVES

(RETURN) TO EXIT
>

kdkhkkhhkhhdkhkhkhkhkhdkdhhhkhddhhdhddkihdkdkikihikkkxk

The source (Replay quick load copy) and the target (DOS
3.3 disk) disk drives are shown. Typing C will allow the
user to change the default settings.

If you type T the transfer will begin. First some
questions are asked. The first asked is what is the name of
the file to be created. Enter any name that you desire. Two
binary files will be created on the DOS 3.3 disk, one with
the name you entered. The other will have the name you
entered with a '.REP' extension,

The next question deals with the language (ram) card.
You can leave the card on when the program executes or you

Page 14

can have it turned off. This program only makes a 48k copy
of the lower memory. For full 64k copies see section 8.4.
Some programs use the language card for buffers, VISICALC
for example. In that case you may wish to leave the language
card on when you restart. With Visicalc you simply type
'/CY'" to reinitialize (clear) the ram card while VISICALC is
running.

For some programs you may not want the language card on
because they require the APPLESOFT in rom. Simply pick the
alternative you want.

If you want the language card turned on, then the lower
48k is put back exactly as it was when the copy was made.
The language card is left on with write enable and bank 1.

If you want the language card off then there is a small
patch made to the program in the lower 48k to turn off the
language card. This program (DOSMAKER) will search for a
location to put this patch in automatically. You may specify
an exact location for the patch if you wish, but it is
suggested that the novice allow the program to automatically
select a location.

When the option of having the language card off or on
has been decided the transfer will start. You will be
prompted for the correct disks if you are working on a
single drive system.

When the conversion is over you will have two binary
files on the DOS 3.3 disk. To execute the copy simply type:

BRUN NAME,AS$8G0

If you don't want to type the ',A$800' every time
perform the two following steps.

BLOAD NAME,A$800
BSAVE NAME,AS$800,LS$3790

This will allow you to run the files with the following
command:

BRUN NAME

These two files are standard DOS 3.3 and can be
transfered to any disk including Hard disks. It is suggested
that users of 5 1/4 floppies put an optimized DOS 3.3 on the
disk such as TURBODOS. This speeds up loading as standard
DOS 3.3 is very slow.

Page 15

8.0 64K COPIES

You can copy the entire 64k. The entire 64k of ram is
copied without compression or packing. This gives a reliable
restart. To make a 64k copy perform the following steps:

. Boot the program you want to copy

. Press the Replay copy switch

. Set the screen and slots(see section 3.2)

. Put a blank disk in drive 1, press C

. When the copy is done, put the Replay utility disk
in drive 1 and press B for boot

Choose the option for saveing the 16k ram card
(option 5). //e owners have built in upper 16k ram
7. When prompted enter a name for the copy

U W N

(=)
.

You now have a 64k copy of the program. It is in two
parts. What is suggested is to put the Replay copy on a back
of a disk, and on the front put the normal DOS 3.3 file
created by RAMSAVE. Transfer the file saved in step 7 above
to this disk. To execute the copy do the following:

l. Insert the DOS 3.3 disk with the ramsave file
and type 'BRUN NAME'
2. The computer will prompt you to insert the Replay copy
3. With Replay copy in drive 1 press Replay button.
4. Press E for execute. Your copy will now restart

The front of the disk is mostly blank DOS 3.3 and could
be used for data file storage, like VISICALC or word
processors.

To make 64k copies that do not require the Replay copy
takes more skill. Software is being developed to
automatically pack reliable 64k copies. For now the only
option is to use the PACKER program to condense the lower
48k copy. Then the user could load in the language card
saved memory and BRUN a packed copy of the lower 48k. The
packed copy of the lower 48k does not require the language
card to load in, thus it preserves the language card
contents,

To use Packer for 64k copies follow these steps:

l) Stop the program, copy the lower 48k, be sure
the ram card restart is set.

2) Boot the Replay utility disk and save the 16k ram card
(option 5). Save the ram card as Namel.

3) Pack the lower 48k file and store it as Name2.

4) Run the program 'CONNECT' on the Replay utility disk.

.

Page 16

Insert the disk containing the packed 48k copy Name?2
and the file Namel,
5) When prompted enter Namnel as the ram card file.

The computer will modify the ram card file slightly and
build an 'EXEC' file for you. This is the file used to
execute the copied program. Make sure all three files are on
the same disk at run time. To execute the copy type:

EXEC EXNAMEL

Page 17

9.0 PACKER PROGRAM

- - . - — —— > - -

INTRODUCTION

Packer is used to create a binary DOS 3.3 file from your
REPLAY copy disk. This will compact your programs and reduce
the number of disks necessary to store them on. With Packer
you will select parts of the original program (now copied
onto Replay quick load disk) and put them into a binary
file. Then to run your program you will BRUN this binary
file from DOS 3.3.

**** THIS SECTION IS VERY COMPLICATED ****
**** A KNOWLEDGE OF ASSEMBLY LANGUAGE ****
**** IS RECOMMENDED. xuxn

Basic Theory of Packing

Shown below is a map of the APPLE ram (random access
memory) . This does not include the 16k upper ram of a
ramcard. The Replay quick load copy only contains the lower
48k and this is the program area you will pack. Many
programs do not require this upper 16k. For users that have
copied a full 64k and now desire to condense the copy into
binary files see the section on 64k copies.

(All numbers are in hex)

PAGES

YY) $8 $20 $40 $60 596 sco
Ty T T T !
! ! ! Hi-Res 1 ! Hi-Res 2 ! ! DOS !
! ! ! ! ! ! !

In this document and in the PACKER program all numbers
preceded with a $ symbol are in hex.

IDEA OF PAGES

A convenient way of referring to parts of memory in the
APPLE is to use pages. A page is 256 bytes of memory. On the
REPLAY disk there are $C@ (192 decimal) pages of memory,
these make up the lower 48k memory. SC in base 10 is 12.
Therefore there are 12*16 decimal pages of memory stored on

a REPLAY disk. These are the first $C# pages of memory on
the APPLE.

WHATS ON THE QUICK LOAD DISK
The REPLAY disk contains all $C@, 192 decimal pages

Page 18

plus the necessary data to restart the proygram that was
running &t time of copy. A reference of what pages are on
each track of the REPLAY disk is given by the PACKER program
and at the end of this section.

You have made a copy of the original program with the
REPLAY card. The REPLAY disk now contains $13 tracks of
data. When you used option C on the Replay card menu the
REPLAY card copied memory pages $@-$C@ to the REPLAY disk,
From tracks @-~$12 there are 10 pages of memory saved on each
track. Track $0 stores pages $02-$0B, track 1 contains
$0C-$15,.....track $12 contains pages $B6-$SBF. Then on track
$13 REPLAY put the necessary data to restart the copied
program, and pages 0,1.

WHY WE WANT TO PACK

The REPLAY disk can't be booted as a DOS 3.3 disk. It
can be booted by the REPLAY card. Although the bootup is
very fast ,10 seconds, it requires a dedicated disk. The
PACKER program is used to pack the REPLAY disk to a binary
file and save it to a DOS 3.3 disk. This binary file can
then be executed from normal DOS, and multiple binary files
can be put on the same disk.

The program is called PACKER for a definite reason, it
takes a larger program and 'packs' it into a smaller
program. The largest binary file you can read/write to a DOS
disk is $92 (146 decimal) pages long, $7F with normal DOS
but $92 with a patch to DOS . There are $C0 pages stored on
a REPLAY disk. Obviously you can't store the REPLAY disk as
one big binary file. What must be done is to decide what
parts of the original $0-$C0 memory pages , stored on the
REPLAY disk, to save. You will load in parts of the copied
memory into a buffer and look at it with some utilities.
When you find a part of memory you want to save you add it
to the binary file (store) you are building. There are
utilities to aid you with selection and packing. Since the
largest file you can store is 146 pages long and the Replay
copy contains 192 pages you will need to eliminate 46 pages.

EXAMPLE: Say you have a program on a REPLAY
quick load disk. Let's say also you know the
program has parts at $800-$1200, $6000-$80060, and
$BUO@-$BF@O. Then there are three modules; one
module for each memory section mentioned above.
You could say why not make one module from $800 to
$BFJ@. Well the longest binary file you may
save/read is $7A@00 long ($9200 with language card
PACKER). The above file is $B@0@ bytes long and
cannot be loaded by normal DOS, therfore we must
pack the modules and make the total length
smaller,

The binary file you build will contain a routine (put
in automatically by PACKER) to relocate memory modules to
their correct running position and restart the program
copied by the REPLAY card. (A memory module is a section of

Page 19

memory you chose to include to the file, it is 1 or more
contiguous pages)

At execution time the relocate rouiine (RERUN) places
these packed modules in their correct locations. This
relocate program is called RERUN. It not only puts the
modules back to their proper position but reloads processor
registers and restarts the program copied by the REPLAY
card.

The PACKER program transfers memory modules from the
buffer to a another area of memory called the STORE. When
all packing is completed this STORE will be save to a DOS
3.3 disk as a binary file. This is the file that you will
execute instead of the REPLAY quick load copy or the
original disk.

RERUN - a small relocation and restart program that operates
at run time.

STORE - the place in memory where the binary file is built’
during packing.

Below is a map of memory while running the PACKER
program.

Page numbers

Y $8 $20 ' $67 $9a scg
Ty T :
! ! PACKER ! STORE ! BUFFER ! DOS !
! ! ! ! !
-------------------------------- oy Tt

The PACKER program resides in memory from page $08
through page $1F. At page $2¢ the STORE begins and builds
up. The buffer starts at page $67 but as the STORE increases
in size the buffer will draw away and shrink, this is
automatic. The buffer cannot overwrite DOS as DOS is needed
to write the binary file to disk once the file is built. The
buffer is used to read in parts of the REPLAY quick load
copy disk for analysis. The user decides whether to include
part of the buffer into the STORE or not. The section added
will be a new memory module. ‘

Another version of Packer (recommended for use) is a
language card version. This version has the Packer program
loading into the language card thus giving more room in
lower memory.

This completes the Basic theory. In review we know the
REPLAY disk contains all memory $0-$C@. The PACKER program
is used to select parts of the REPLAY disk to be included in

Page 20

the binary file(STORE). These selected parts are called
modules. The binary file is made up of these modules and a
program called RERUN. RERUN puts the modules back to their
correct place and restarts the program copied by the REPLAY
card. The next sections will expand greatly on performing
these actions,

OVERALL PROCESS

Starting new; read in part of the Replay quick load
copy into the Packer buffer. Examine the buffer for code and
ASCII, repeat until all memory has been examined. Option 7
for full mark is helpful. When done the user has a list of
pages that the program uses. These are the pages that must
be copied (packed) into the file we will create. We put the
pages into the file in modules.

A module is a section of memory, contained in the
buffer, consisting of 1 or more contiguous memory pages. For
example if we decided the program we want to copy uses pages
$20-$24 then we would read in the track(s) containing those
pages into the Packer buffer, using option 2. Once in the
buffer we add them to the file we are building. This is a
'module’.

When finished (all memory on Replay copy examined, and
the memory needed added as modules) save the file we created
to a DOS3.3 disk. The file save to the D0S3.3 disk is a
binary file that you can BRUN. Note the starting address of
the binary file when you save it.

Page 21

Packer Program Operation

We supply two versions of the Packer program. One
operates in lower memory without the language card. The
other operates with the language card. We suggest using the
language card version as it can pack larger files (up to §92
versus $7A for lower memory). Also not all functions
described here are available in the lower memory version.

With the PACKER program running the following menu will
appear.

khkkdkhkdhhkdhhhkhhkhkdkdkhkddehhhhkkdhhhhkkhkhhkkkkk

BUFFER CONTENTS
PHYSICAL $67 $6C
LOGICAL $@C S$11

PACKER MENU

FIRST TRACK >01
OPTIONS: NUMBER OF TRACKS >01
l. INITIALIZE PHYSICAL BUFFER START>67
2. READ TRACKS LOGICAL BUFFER START>@C
3. DISSASSEMBLE PHYSICAL BUFFER END >7B
4, ASCII DISPLAY
5. ASCII MARK PHYSICAL STORE END >20
6. CODE MARK LOGICAL STCRE END >20
7. FULL MARK
8. ADD TO STORE
9. PAGES STORED
A. SAVE BINARY FILE

EXIT TO BASIC
RUN COM FILE
E. EXECUTE CURRENT STORE

Qw
o o

(ESC) CATALOG DOS 3.3 DISK
>

khkhkhhkhhhkhhkhkhkhkhhkhkhkhkhhkhhhhhhkhkhkhhhkkhhhkhkkhi

First let us look at the upper right part. This is the
status area and will give information needed on the current
state of the BUFFER and STORE.

FIRST TRACK

This is the first track stored in the buffer. On the
REPLAY disk there are $13 tracks of stored data. During
packing you will read in several of these tracks to the
buffer. FIRST TRACK tells you which track starts the buffer.

NJMBER OF TRACKS

The number of tracks contained in the buffer is

Page 22

displayed with this label.

PHYSICAL BUFFER START

This is the page number of the physical start of the
buffer in memory. During packing this number will change as
the STORE increases in size. This is where the memory data
from the REPLAY quick load disk is stored for your analysis
and selection.

LOGICAL BUFFER START

Let's digress to introduce two new concepts. They are
physical and logical addresses. Data in the buffer has a
physical address in memory when you run the PACKER program,
the physical address is the data's address at that instant.
.But the buffer contains data read from the REPLAY quick load
disk. That data from the REPLAY disk has an address called a
logical address, the address the data occupied when it was
captured by our REPLAY card.

EXAMPLE: PACKER is now being run and the buffer
start is $6700. When data is read into the
computer from the REPLAY disk it will be stored
starting at $6700. Then the data's physical
address is $6700. Now say we read in track 1 from
a REPLAY disk. In appendix B we see that track 1
contains data copied from $0C0@-up. The data was
at $0C@0 during original program execution. The
logical buffer start is then $0C00. That is where
it was copied from at execution time. That is
where the data should actually go. We cant put it
there because it interferes with the PACKER
program and the STORE, so we put it in the buffer.

PHYSICAL BUFFER END

This is the position in memory where the buffer ends.
Beyond that point there is no more data from the Replay
quick load disk. So in between PHYSICAL BUFFER START and
PHYSICAL BUFFER END is the data read in from the REPLAY
disk.

PHYSICAL STORE END

The PACKER program builds a binary file from the REPLAY
disk with your help. The binary file in memory is called the
STORE. To give you an idea how large a binary file you have
built so far the physical STORE end is given. The STORE
always begins at $2000 (50800 for language card version).

LOGICAL STORE END

The binary file you are building will execute somewhere

Page 23

in memory. PACKER allows you to build it with a starting
address anywhere between $800 and $AG00. The file is built
from $2000 (S9800 for 1lc version) up but it is modified to
be able to run in the above range. You will need to specify
the starting address when you 'initialize' the STORE. More
on this later. With LOGICAL FILE END you can monitor where
your binary file ends, you don't want to overwrite DOS at
execution time. If when your program (packed binary file) is
loading in it overwrites DOS then the system will crash.

BUFFER CONTENTS

Across the top of the screen are two lines. One line is
labelled PHYSICAL and the other is LOGICAL. This will give
the user a translation from physical address to logical
address. When the buffer contains data the top of the screen
will tell the user the physical address of the data for
dissasembly and analysis. It will also tell the you the
data's logical address.

Looking at our example menu we can see from the status
area on the right the FIRST TRACK is 1, the number of tracks
is 1, the buffer starts at $676¢ and ends at $7BG@. The
LOGICAL BUFFER START is $0C@@. The more you use these the
easier will become reading them.

PACKER MENU

9.1 INITIALIZE STORE

In INITIALIZE you will prepare the groundwork for
building the BINARY FILE. Thinking in reverse for a moment,
if you had the BINARY FILE finished and on a disk the
computer would need to know where you wanted it loaded. We
will call this the DESTination address, or DEST.

INITIALIZE needs to know this before the file is built
as it is a very basic piece of information. This address is
different from the address where you will build the file.
The address where you build the file is the Physical address
(where it is built at this moment) while the address
DESTination would be the Logical address (where it will
execute at run time).

The other thing INITIALIZE needs to know is the
placement of the restart program RERUN, but we will postpone
that discussion for a moment.

How to Choose DESTination

l. It can be between $0800-S$SA00Q.
The lower 8 pages of memory are always included
for you, they are used extensively. It cannont be :
above $A000 as the largest binary file is $92 hex long.
2. Choose a lower value, $68 (page 8) is a good point.

Selection logic for DESTination:

Page 24

You are going to build a binary file made up of memory
modules. RERUN will relocate these modules to their correct
addresses and then RERUN will start the program that we
packed. The memory modules are sections of memory you chose
to include in the STORE (binary file). The best way to
explain this is with an example.

The memory map below shows the APPLE memory with a
program marked in 3 sections of stars, called modules.

PAGES
$0 $8 $20 $40 $60 $96 SCo
C T T T T
! ! ! Hi-Res 1 ! Hi-Res 2 ! ! DOS !
! ! ! ! ! ! !
T kwmaany ymemway T [aawwwrr
$18 $22 $40 $4A $90 $Al
|======s======= t444++++++++ !
$08 $37 $50 $7F
T+++++++++++++ !
$40 $6F

The total length of the three starred areas is $28
pages. Don't forget about the lower 8 pages that are
included automatically. With their inclusion the length of
the binary file is now $36. What is needed is the ability to
take their compacted length of $38 and fit it into memory
somewhere, There are several criteria for this placement.

l. First of course is the limit set by the program of
starting between $08 and $Ad.

2. Second is to avoid causing the program to write over
itself,

As an example three alternative packing locations are
given, more could be suggested. The two locations marked
with plus signs are OK., You could pack the binary file
between $50 and $7F. This is best since this spot does not
interfere as RERUN takes the packed file apart and places it
back in the starred (*) areas. Since the $50 area is not
overlapping any stars there is no chance for a conflict.
Another alternative would be to pack it between $40 and $6F.
Even though it resides where one of the modules goes if you
check the sequence of placement you will see there will be
no conflict. By the time the module going to $40-$4A is
placed the binary file between $40-$6F has allready been
moved to $18-$22, so this area ($40-$4A) can be written
into. i.e. the lower 8 pages have been moved out and the
range of $18-$22 has been moved.

The last alternative is a bad selection. This attempts
to put the binary file starting at $080¢. This leads to

Page 25

trouble. The first 8 pages are relocated without any
problems. But now we wish to move the first set of stars out
to their proper location at $1800 to $2200. When we do this
we conflict with a portion of the binary file we have not
moved out yet. An error will occurr!!. The module's
destination is $180#¢. In other words if RERUN puts the
module out to its correct location it will overwrite the end
of our packed binary file.

The map below should help visualize the movements for
the bad selection.

BINARY FILE

! $@-87 ! $18-822 ! $40-54A ! $90-a1 !
Logical
!=== 1
$08 $10 S1B 526 $37
Physical

One benefit that PACKER provides is error checking for
overwrites. When you try to add a module to the STORE the
program PACKER will check for conflicts in overwritting.
Also at the time of saving to a DOS 3.3 disk the file is
checked again. This second check will become obvious later.

So for this example the input to the first question of
starting address could be $50. The program wants only the
page number of the starting location. You cannot start the
binary file in the middle of a page. Later in the text we
will refer to DESTination, or DEST for short.

The second question asked in this initialization is
placement of the restart program RERUN. All this time we
have been talking about moving the memory modules around.
The RERUN program is in control of this moving., It is a one
page restart program built into your binary file. It will be
modified to fit wherever you want it to go. As with the
first question there are limits and placement logic. The
limits for RERUN placement are:

l. It must be after the DESTination

2. not more than S$7A ($90 for lc version) pages
after DESTination

3. it cannot be in the first 8 pages

The logic for selecting RERUN's location is not too
hard. RERUN must be able to run until all of the memory
modules are relocated to their correct locations. It is
always in control and therefore can never be overwritten.
Pick a single page of memory that is not used by your copied
program and put RERUN there. Remember the aforementioned
limits. There are utilities and text to help you decide
where to put the 1 page of RERUN program. See option 6 code
search in the documentation.

In the above example a good choice could be $76. Enter
the page number only. This entry in later text will be

Page 26

referred to as REDEST. This page was not used by the program
we copied, Ah.. you say it is in the middle of one of the
memory modules. Not so.. the values of DEST and REDEST are
set before anything else. They define the building points of
the binary file, the STORE. Later when you begin to add
memory modules the PACKER program will automatically split
modules to fit snugly around the RERUN program. In other
words if you want to add a module to your STORE, and it will
try to overwrite RERUN the Packer program will split the
module and make two modules with the RERUN program between
them. This is automatic and will be taken care of for you.

After the two questions are answered the disk drive
will spin shortly. This is Packer loading the first 8 pages
to the STORE. and loading the restart data into RERUN.

Next you pick the screen that is to be shown at
execution time. It could be hires 1,2 text 1,2 etc... You
will be asked four questions on screen control. Packer needs
to know what screen to build into RERUN. This is the screen
to show when the program restarts. There are 4 questions
with two options for each. Option 1 is default, if you hit
any key but 2 for the alternate, option 1 will be chosen.
They are self explaining.

9.2 READ TRACKS TO BUFFER

You will be asked to enter the range of tracks you
wish to load into the buffer to work with. Please note one
added feature. Just above the first query of 'START TRACK'
is a status line of 'TRACKS /LOAD '. This is the maximum
number of tracks you may load.

9.3 DISASSEMBLE CORE

This option allows you to use the APPLE disassembler on
any area of memory. This will be one of your major tools to
determine what parts of the REPLAY quick load disk to
include in your STORE.

You could read in several tracks from the Replay copy
of the copied program. Then use this option to disassemble
the buffer area. The limits of the buffer and the logical
memory area are all given in the status area.

EXAMPLE: You have made a copy of a program. Now
you wish to pack it. Using option 2 you read in a
section of memory. Now you can use option 3 to
disasemble the buffer. On entry to this option the
status areas will be displayed and the computer
will ask you for the starting address ,physical
address, to begin decoding. Enter this as a full
address, not as a page number. If you have a
specific range of memory you wish to decode you
can use the translation on the top of the screen
to calculate the physical address.

Page 27

The computer , through calls to the mini disassembler
in rom, will show you 20 lines of code. At that time it will
halt and wait for a keypress. If Return is hit the computer
will exit to the MAIN menu. If anything else is pressed the
next 20 lines of code will be shown. This will continue to
loop until a Return is hit,

The benefit is the ability to look at sections of the
REPLAY disk and see if a program is there. The disassembler
will list the address, the instruction codes and the
assembly mnemonics. For the novice at assembly language
appendix C will help you in spotting possible program areas.

9.4 DISPLAY MEMORY AS ASCII

The program you copied will not only have instruction
codes, the machine code that actually 'runs' the program, it
will also have some parts of memory set aside for ASCII
storage. ASCII is a term used to represent the codes of
letters,numbers,symbols...etc. Every letter, number and
symbol..... all are represented by a unique hex number.
Programs use these codes to print something on the screen.
The Packer program has several pages of nothing but ASCII
codes.

An example would be the MAIN menu. That menu is put on
the screen by a driving program. The driving program has a
certain place in memory where a copy of the menu is stored
in ASCII form. Most programs use areas of storage for ASCII.
You will need to look for these also and include them in
your STORE. You couldn't run the program if no menu or
prompts were put on the screen. Also the program will expect
the ASCII to be there, if not then the program could blowup
or go off into never never land.

On entry to this section the usual status will be
displayed. Then the program will prompt you for the starting
address to begin showing memory. Enter a complete address,
not a page number,

The program will then begin displaying memory as if it
was ASCII stored. It is easy to spot the areas you want. You
know what menus, prompts etc are part of the program you
copied. Look for them. You might be surprised what else you
can see. The display on the screen will give you 32
characters per line with an address on the left. As in the
dissasembler section if you hit Return the program goes to
the MAIN menu. If any other key is pressed the next series
of memory is displayed.

9.5 ASCII SEARCH AND MARK

Here is a search utility to help you.rThis section will
search the buffer for occurrences of ASCII. The program will
start with the first page of the buffer and count the number

Page 28

of stored bytes with values between $A# to $D@. This is the
normal range of ASCII for letters and numbers. At the end of
the page there is a count. The program compares this count
to a stored value. If the count from the page it just
checked is greater than the stored value it 'marks' that
page as being a page to include in the STORE. All pages of
the buffer are checked. At the end of the buffer all the
'marked' pages are shown to you. Say the buffer starts at
$67080 and has one track in it. If you use option 5 all 10
pages of the buffer are checked. At the end the program
shows you which pages in the buffer were marked.

At the first of this section we talked of the stored
value. This is the value the count must be equal to or
greater than to 'mark' the page. This value is set in the
program but can be changed by the user. On entry to this
option the program displays the current value and requests a
new one. If you like the current value just hit return and
the program continues with analysis. If you wish to change
the value enter the new one, in hex. The program will then
use this as the default value until changed.

After the buffer is checked the marked pages are shown.
They are listed in the format shown below.

$67...871 $79...$82 $90...590

There will be from 8 to ?? pairs of numbers listed. The
first number of a pair is the first page marked in a
continuous series. The second number after three dots is the
last page marked in a series. All numbers in between the
values were marked also.

9.6 CODE SEARCH AND MARK

This section is very similiar to the previous. It is a
utility to search the buffer memory for possible areas of
instruction codes.

The buffer is searched page by page as in the previous
section. This time the program counts the number of assembly
lines it can find in a page. The APPLE has a dissasembler
built into the monitor roms. One assembly line is one line
on the screen that contains an opcode in hex and some
assembly mnemonic describing what that opcode is. When the
APPLE disassembler is called an address is passed to start
the disassembly. What this section does is pass the
disassembler a page of memory and counts the number of lines
of assembly code it generates. For each page it gets a
count, It compares this count against another stored value
different from the ASCII value. If the count for the checked
page is lower than the stored count the program 'marks' that
page as being a page to include in the STORE. Therefore the
lower the found or calculated count the more likely the page
contains valid instruction codes. This is because the fewer
lines generated mean more opcodes per line. If a page
contains nothing but hex $FF then the dissasembler will

Page 29

generate 256 decimal lines. Hex $FF is not a valid opcode.

The count for each page is displayed on the screen
before checking. When you run this section you will see a
block of numbers displayed on the screen. These are the
counts for the pages the program is checking. At the end of
the buffer all marked pages are displayed just as in the
previous section.

On entry to this section the current stored value,
called sensitivity, is displayed. The user may change it the
same as in the previous section. Now a few words on the
sensitivity. The fewer lines of assembly code the
disassembler generates the more likely the page being
checked is a valid page made up of instruction codes,
Therefore to make the program very sensitive to selecting
pages , and finding some borderline or trash code, make the
sensitivity value high. To find areas of very packed good
code then set the sensitivity to a small value such as $60
or $7@0. A good overall value is around $98. Assuming an
average of two bytes per line of assembly code comes out to
a sensitivity of $80. Try different values and see what
results you get. See appendix G for more information.

There is another searching and marking algorithm used
in this section. This is transparent to the user but is done
automatically. Any page that is marked as having possible
code is checked again. The next check is for 16 bit
indexing. This is a popular means of moving data, doing
table lookups and many other objectives. PACKER cannot spot
the data or table areas easily, because the data or table
can be made up of anything. One way to try and mark those
pages and include them into your STORE is to look for spots
where the program uses them., That is done in this part.
PACKER will take any marked page with a count of less than
$80 and do a search for 16 bit indexed used. Any pages
indexed into by the program will be marked for you, also any
pages jumped to by a JMP or JSR are marked.

** That is why strange pages may appear in the marked
display. Your buffer may only contain between $62-$33 but
the marked pages when shown may have other values marked.
These were obtained by looking for these indexing opcodes.

This is a good place to pick a value for REDEST. Before
INITIALIZING come to this option and do code search. Choose
an unmarked page and disassemble it with option 3, if it
looks like trash or unused then use it as REDEST.

See appendix C for more detail on assembly code
searching.

9.7 FULL CHECK OF REPLAY DISK

This section will do a full search and mark on the
entire REPLAY disk. All memory pages will be loaded and
searched. Both the code and ASCII search will be used. On
exit the program will display the marked pages the same as
in options 5 and 6.

Page 30

There is one important thing to stress here., Use of
this option after you have started building the STORE is not
recomended. The original full size buffer will be used for
speed. If your STORE has a physical STORE end past $67 then
you will lose that data. Remember as the STORE gets larger
the buffer shrinks to draw away from the end of the STORE.
This section will not use the small buffer size but use the
original full buffer. If you have started building and the
physical end is not at or beyond $67 then you can use this
option safely.

The use of this full check can greatly help spotting
the usefull areas of memory. You may obtain a hardcopy of
the marked pages the same as in the previous sections by
entering the printer address when requested. If a carriage
return is hit the output will go to the screen.

Since this section calls the code and ASCII mark
options the current sensitivities before entering are used.
If you want a more optimistic marking make both sections 5
and 6 more sensitive.

9.8 ADD TO FILE

This section is used to take portions of memory in the
buffer and move then to the STORE. You must have previously
INITIALIZED. You have looked at the buffer with options 3-7
and now you are ready to move a portion from the buffer
toiinary file, STORE, you are building.

On entry the usual status areas are displayed. The
program will prompt you for the beginning physical page
number to add. If you hit return the program goes back to
the MAIN menu. Two things to emphasize here!! The first is
you will enter the **Physical** page number, not the
logical. The translation table at the top of the page will
help you recognize what logical parts of memory you are
adding. The second thing is to stress that you are to enter
the page number only, not the full address. All additions to
the STORE are in full page increments. No half or partial
pages are included,

The program will prompt you for the ending physical
page number. Again this is the physical, and you must use
page numbers. The number you enter will be included also. So
if you enter $67 first and then $6B the program will take
pages $67.68.69.6A.6B and move them into the STORE as a
memory module.

Before moving the pages to the STORE the program will
first do an error check. The first error check done is to
ensure that repositioning this module at run time by RERUN
would not cause it to overwrite RERUN itself., You cannot
save a module which will attempt to relocate over RERUN.
Remember, you must pick a page for RERUN that will not be
used by the program you copied. If you do attempt to
overwrite RERUN the program will print an error message and
ask for the starting address again. The program knows where
RERUN will be located by the address you entered in

Page 31

INITIALIZE for REDEST.

The next error check is for an attempt to overwrite
itself. This is the same error that we covered in the
initialize section, Any attempt by the module to overwrite
itself or another unplaced module is not allowed. An error
message is printed and you are prompted for the starting
physical page again. At this point you have two options. The
first is to start over again and change the location of
DEST. By doing that you may be able to move the binary file
around enough to stop any overwrite errors. This is not the
best solution but you may have to resort to it sometimes.

The other alternative is to delay adding this section.
This is going to be tricky but let's try with an example.
Lets go back to the example used in INITIALIZE. Below is the
map again,

This map is a representation of our binary file (after
packing) as it is loaded into memory ready to be relocated
by RERUN.

BINARY FILE

! $0-87 1 $18-$22 $40-842 ! $90-a1 !
Logical
!=== 1
$@8 $lg $1B $26 $37
Physical

This setup causes an error when the module stored at
$10-$1A moves out to its correct position at $18-$22, A
solution to this would be to delay including this module
until later. If you added the module for $48-S$4A before the
$18 module then there would not be a problem. The new map
shows the memory setup.

BINARY FILE

! $0-87 | $40-S4a ! $18-822 1 $90-a1 !
Logical -
!==::: ITT=E=m=== !
$08 $10 $1B $26 $37
Physical

The module placement above would be correct. The
modules are always moved one page at a time starting with
the lowest page in a module. Thus the page at $1A physical
has a logical address of $18 and can be moved down. The
module below has allready been moved out so the space can be
written on,

This brings up the order of placement. The modules that
you add to the STORE are placed back into their correct
memory locations. They are done one module at a time
starting with lowest module in memory and moving up. Thus
any memory below the current module can be written to if

Page 32

desired. The only exception to this is when the RERUN
program is below the current module. You can write anywhere
but that particular page. In the initialize section we said
you must pick a page not used by the copied program.

RERUN does not care in what order the modules are
packed into the binary file. It will relocate them out one
by one at execution time.

9.9 Show Current Pages Stored

This option will allow you to determine what pages you
have allready moved into the STORE. On entry to this section
the computer will ask for your printer slot number. If you
want a hardcopy of the data enter the slot number the
printer interface card is in. If you only want to see the
data on the screen then hit return.

The usual status areas are displayed thea DEST and
REDEST with labels, Below this is a printout similiar to the
marked pages output from code or ASCII search and mark. The
computer will print several pairs of numbers. Each pair of
numbers is a module. The first number is the logical start
of the module. The next number, after three dots, is the
last page included in the module. With this data you can
keep a record of the areas of memory that were used to build
the binary file. It is a good idea to use this option with
the printer just before saving the binary file. That way you
can keep a record of the pages used.

%* %k % %

If the program doesn't fully execute try adding more pages,
or use more sensitive values in the search and mark
routines.

* k% %

9.A Put File to DOS Binary

This is the final step of using this program to build a
file. In this section two important things occur. The first
is a final error check of the stored modules. This is the
second error checking mentioned in the INITIALIZE section.

The purpose of this check is to stop any overwriting of
the binary file by itself. You might think the error checks
in ADD section did all of this. Well they did to the best of
their capability at that time. The problem then was that the
program had no means of knowing how large the binary file
would become. Neither did you on the first try. The best way
to explain this is with another example.

Page 33

EXAMPLE: The user has initialized the STORE and added
two sections. They are shown in the map below.

BINARY FILE

! $0-38 ! $08-$28 1850-$52!
Logical
'=============================== !
598 $10 $30 $32
Physical

The user has added the $08-$28 module and the $50-$52
module. Neither of these cause an error at this time. I am
assuming RERUN is placed somewhere out of harms way. The
error happens later when the user adds the section from
SAG-$C2. The map below now shows the status of the binary
file when it tries to execute. The lower 8 page module
relocates ok, the next module of $¢8-$28 also has no
problems. The problem of overwrite occurs when the module
$50-$52 attempts to relocate. It will overwrite part of the
last module which has not been moved yet.

BINARY FILE

! $0-$8 | $08-528 1856-8521 $AQ-$C2 o}
Logical

!==================:============================:= 1

$08 $10 $30 $32 $54
Physical

This error can only be caught when the entire file has
been built. When you enter option 9 the program checks for
these errors. If found it will tell you which module and
where the overwrite occurred. The solution is to use option
9 to get a copy of the pages you included. Then use option 1
to re-~initialize the STORE.

With the knowledge of where the problem of overwrite
occurred, you can move the value of DEST to try and avoid
this. If you increase dest by $84 this would solve the
problem. You can't decrease it anymore because it is
allready at the minimum. Another solution would be to delay
including that module as in the previous example. Use the
same DEST but this time add the module $A0-$C2 before the
module $50-352. With so much ability to move the program
start, change order of modules..etc there should be a
solution to almost all packing problems,

Once the error checking has occurred, assuming no
errors, the program does the final touchups on the binary
file. It will display the command you need to use to execute
the binary program. An example is shown below.

Page 34

BRUN REPLAY,AS$1000

One note is for very large files that have a LOGICAL
STORE END at or near 359A00 there might be a problem. Issue
the command 'MAXFILES 1' before the BRUN command and there
should be no problems.

Packer will prompt you for a file name to save the
binary file under.

The file is stored from the range of $2000 ($08¢0 for
lc version) -->$2?00 . This is where the file resides in
memory as it is being built. To execute the file you use the
brun command, but you must use an address extension as shown
in the above example. The PACKER program will give you the
full command to use. If you don't want to use the address
extension all the time the file can be changed. Instead of
giving a BRUN command you could BLOAD the REPLAY file. In
the example above you would 'BLOAD REPLAY,AS$1000°'. Next you
would save the file again at its proper location. This way
all you need to do to run the file is to type BRUN REPLAY.
To save the file you need the starting address $10€¢ and the
length., PACKER gives you the length of the file at the same
time that it saves it. The length shown is the hex value.
Let's say for the example above the length is $40. That is
$40 pages of length.

You would use PACKER to build the file and then save it
to a binary disk. Then exit PACKER and issue the command:

BLOAD REPLAY,A$1000

Then you would give the command:

BSAVE FILENAME,A$1000,L$4000.

The length of the file goes after the LS and put two
0's after the length.

The only exception to this is if the file needs to do a
master relocate. The modules will be relocated by RERUN. A
master relocate is when the entire binary file must be
moved. This happens when the file you built wants to load
where DOS is. You use DOS to load the file so you cant
overwrite that. The solution is to load the file in lower
memory and then relocate up to higher memory. This is
automatically done for you. If you choose DEST such that the
binary file will overwrite DOS when it loads the PACKER
program adjusts for this. It builds the file at $20060 ($3800
for lc version) and modifies it to relocate to higher memory
once loaded. You can tell if the binary file will do a
master relocate by looking at the LOGEND value at time of
saving. If LOGICAL STORE END is greater than $9A@# then the
binary file you save will do a master relocate.

The exact sequence for a master relocate is as follows.
When option A is hit PACKER checks LOGEND. If LOGEND is >$9A

Page 35

then a flag is set in RERUN. Some paraneters are set in
RERUN that give the desired destination of the binary file.
The binary file is always loaded in initially at $0800 (for
lc) or $2000 for lower memory PACKER. Once in memory the
first 3 bytes of the binary file jump to RERUN, and the flag
in RERUN is checked. If set RERUN relocates itself up into
memory. It can overwrite DNS at that time because it is not
needed any more. Once relocated the operation is the same,
all modules are placed and program restart occurrs. All of
this action is transparent to the user.

This takes you back to the main menu.

9.B Exit to Basic

This will exit the user to APPLESOFT.

9.C Run Command File

This option will pack a binary file for you if a
command file is available for the program you have. A
command file is a short binary program containing all the
information necessary to pack a program copied by a REPLAY
card. There are several command files on the disk with the
packing program. They all start with C.name. For example the
command file for lower memory PACKER is called C.LOWPACK.

If a user has made a copy of the packing program with
the REPLAY card then he could use the command file to pack
it into a binary file. This is only for example as the
packing programs are given to you unprotected. The user
would run the packing program and choose option C. On entry
the program will ask you for the command file name. Put the
disk with the command file in drive one and enter the name
C.LOWPACK. The computer will load the command file and ask
you for the REPLAY disk that contains a copy of low memory
packer. Insert that disk in drive one and hit return. The
program will then pack that disk into a binary file in
memory.

On exit the program will tell you to use option A to
save the binary file. Hit A for saving. The program will ask
for a DO0S3.3 disk and request a program name to save the
file with. It will also give you the command to use to
execute the stored binary program.

That is all there is to command file packing. If you
wish to create new command files for other programs see
section 7.0 of this manual.

9.E EXECUTE CURRENT STORE

This will execute the current store you have built in
memory. The packer program will move it to where it would be
loaded in by DOS and then jump to the starting
location. (DEST)

It is recommended that you use option A to save the
store first as using E will kill packer and your STORE. This

Page 36

allows a user to build a store, save it and immediately test
it without exiting to reload...etc.

Page 37

1.0 PARAMETERS FOR REPLAY PACKER PROGRAM

T o e e o e e e = e e et e e e e et o e = ot e

This is the parameter list for REPLAY disks. Programns
will be listed by name. Each program will have the necessary
pages to copy given. Use the PACKER program to access a
REPLAY copy disk and pack the given pages.

The * after a program name means supplied by alternate
and not tested yet.

The ! after a program means the moudules given are in
correct sequence for entering into command file create.

Some prorams will also have other information given on
useful memory locations. There will be labels for some
locations such as 'men' or just a memory location in
parenthesis for a level or whatever.

NOTE: The following program titles are copyrighted by
software companies.

Current date 065/23/83

NORAD ! $8...$1A $20...$33 $34...$65 $90...5$9A
DEST=08 REDEST=1C

SARGON ! $8...$2E $2F...S$2F $36...$36 $38...S$3F
DEST=08 REDEST=37

MARS CARS ($800B)

REPTON MEM LOCATIONS: BOMBS=$385E SHIPS=$0061
CANYON CLIMBER MEN=$82

SWASHBUCKLER #GUYS=$9C2

BUG ATTACK ($4CA2)

HORIZON V SHIPS=$84

SNAKE BYTE SNAKRKES=$725E LEVEL=$7265

TUBEWAY (SA3)

SERPENTINE ($D8)

GOBBLER #GOBBLERS=$6046

NIGHT CRAWLER #SHIPS=340A

Page 38

NEPTUNE SHIPS=$87 BOMBS=$88

CRISIS MOUNTAIN MEM LOCATIONS: MEN=$37B
A.E. ($1ABC)

CONGO ($4614) .

TORAX * $40...S60 SOF...$20

INVASION FORCE ! $8...$33 $34..5490
DEST=08 REDEST=42

BUG ATTACK * $09...$15 $40...5$84

SPACE RAIDERS $20...584

TWERPS * $5F...$BF $1F...$3B

APPLE PANIC * $8...$20 $60...5C0
FIREBIRD ! use C.NO $20 $50

HORIZON V * $8,,.$20 $90...$8BF

BEER RUN * $8..$20 $60...$8F $AOQ...S$BF

DUET ! $8...$33 $34...$40 $9D...$BF $4C...$4E
DEST=08 REDEST=42

STARBLAZER $8...S1F $40...$9F LCMOD SA0Q...SBF FUEL=$4800
BOMBS=$4980 SHIPS=S$4A80

CHOPLIFTER §$8...S1lE $60...$BF

JAWBREAKER $8..$1F $60..$83 $8E..$92 §$96..S$BF
ROCKET COMMAND $8...S840 $5E..S$62

LOCKSMITH 4.1 ! $8..S1F $80..S$BF

& NYBBLES DEST=08 REDEST=29
AWAY II

ECHO 1.0 ! $08...517 SBA...S$BF
DEST=08 REDEST=18

COPY II+ V4.1 UTILITY $08...549 $A@...SAl S$B@...SBF
DEST=08 REDEST=4A Display text 1 on restart

COPY II+ V4.1 BIT COPIER $08...$30
DEST=08 REDEST=31 Display text 1 on restart

SENSIBLE SPELLER ! $8...$33 $34...$3F $60...$8D $8E...$96
DEST=1F REDEST=42

Page 39

SCREENWRITER ! $08...$1F $AA $B3..$B5 S$B7 $BF $96...$9C
$8E...$95 $3F...$6F $7¢..$33 $84...$8D CLEAR HIRES
DEST=08 REDEST=29 »Display Text 1 on restart
SCREENWRITER RUNOFF Same as Screenwriter execpt
display hiresl on restart.
APPLE LINK ! $8...833 $98...5A0 $60...$8D $8E...$96
. DEST=22 REDEST=42

MONTY PLAYS MONOPOLY $0¢8...S3D
DEST=08 REDEST=3E Display graphics 1 on restart

LASERSILK ! $8...S33 $34,...83F 889...89F $60...S6F

- $70...883 $84...588
DEST=8 REDEST=42

CANNONBALL BLITZ ! $8...S1F $98...$BF §51...879 87A...$83
$84...98D S$8E...$96
DEST=8 REDEST=20 ($6F12)

SEAFOX * ! $08...81F $96...$BF S$8E...S$94 $59...$5F $60...58D
DEST=8 REDEST=95 #subs $6D69

ULTRA CHECKERS V2.8 $08...$33 $34 $3F
DEST=08 REDEST=40 Display hires 1 on restart

SCANNER V1.6 * $¢8.,.528
DISK ORGANIZER V2.6 * $08...824 $30...831 $37...83A
$80...$8F

DEST=10 REDEST=25

BACK IT UP II+ V2.4 $9F...SBF $80...S$8F
DEST=20 REDEST=28

SNOGGLE ! USE C.NO $20 $50

APPLE STELLAR INVADERS $08...S0F $98,.,..SBF $41...598
DEST=08 REDEST=10

MARS CARS Use C.no $20-S5¢
RASTER BLASTER * S$SOA..S$20 $44...S8Bg0
APPLE OIDS * §$08...$1F $40...580

VISICALC ! $08...$33 $34.,.$65 $66...379 S7A...S7F
DEST=08 REDEST=80

STAR CRUISER * $08...S1F $40...$80

VISIDEX * $08...S1F $97...9CO0 $60..561

Page 40

MAGIC WINDOW * $@8...$48 $96...SC0O

THE ELIMINATOR ! $90...SAF $08...S1F $4¢...S6F $70...583
$84...586 DEST=08 REDEST=20

CROSSFIRE ! $08...$33 $34...$65 $66...879 S$7aA...S7F%
DEST=08 REDEST=88

SNACK ATTACK ! $#8...$1F S9A...S$9A $29...851 $52...$83
$84...88D S$8E...$97 DEST=08 REDEST=20 FISH=SEA

TAXMAN LEVEL=$55

Thanks to Replay users for some of the parms and mem
locations.

Pirates Bay (modem 415-775-2384) also contributed many

Zaxxon Ships $BF2B
Thief men $31A

Page 41

11.6 TIPS ON COPYING AND PACKING BINARY FILES

The REPLAY card will allow you to copy many different
programs for backup, quick restart, and packing to binary
files. There are a couple of tips for operation of the card.
We will go over some of these here.

Remember that the REPLAY card will copy total load
programs only. This does not hinder you from copying
programs like the word processors. You could copy the editor
program which will let you build and edit files. You could
then copy the printer program which will access your text
file for printing. Most word processors store your files in
text files on normal DOS 3.3 disks. Keep examples like this
in mind.

There are several coniderations to keep in mind when
packing a binary file. First is the REPLAY copy itself. You
want to make the REPLAY copy at the best time for later
restart,

The largest binary file you can load in from a disk is
about $9A hex pages long. This is because you can only load
into memory not taken up by DOS. To pack programs that are
extremely long you may not be able to pack the HIRES page in
with the code and data. This means that when the program
starts the HIRES page is blank or full of garbage. A nice
fix for this is to copy the original program in the act of
'refreshing' or 'redrawing' the HIRES page. Most all
programs at some time or another will erase and redraw the
HIRES page. Each program is different but find the sequence
or command that will force this action. Then right as you
issue the command hit the switch for copy. Timing is tricky,
it might take a couple of tries. ’

The benefit here is that when you pack the binary file
you don't need to include the HIRES page. It will be redrawn
for you by the program when it restarts.

Another idea involves the ram card and its use. When
you make a copy of a program with the Replay card the quick
load copy is a copy of the lower 48k ram and the data
necessary to restart the copied program. Some programs
advertise or write in their documentation that they don't
use 64k, they only use 48k. Well....take that with a grain
of salt. Many programs only use 48k for their program code
but if they see a ram card or in the case of the //e they
see the upper 16k ram they will use it. The reason is for
protection. Since the Replay card copies 48k initially they
can tell if a copy has been made by writing some byte
sequence in the ram card and checking it every so often. If
a 48k copy is being run the bytes in the ram card will be
changed.

There are several solutions to this problem.,

1. remove the ram card check (hard but best)

Page 42

2. copy without ram card in system. If they don't

see a ramcard they don't use that protection system.
3. copy all 64k. Troublesome for size of file.

wasted space.

To remove the protection is the best of course. Some of
the programs we
have looked at can be modified by deleting the reference to
address $C#80 which turns on the ram card.

Copying the program without the ram card is an easy
solution except if they do a status check of the system.
Some programs will take an inventory of the Apple when they
boot in. If that inventory changes, i.e. a new card in a
slot or one missing, then they crash.

12.9 PACKING EXAMPLES

Here is an example for packing a binary file. We will
go through the steps for packing the program LOCKSMITH.
There is a command file for this program but we will go
through the entire sequence of making a copy, analyzing
code, packing a binary copy, and creating a command file.

The first thing you would do is to make a copy with the
REPLAY card., This gives you a copy in REPLAY format. You
could execute this copy with the REPLAY card but you would
like to put it into a binary file for easier use and
storage. You could use DOSMAKER on the utility disk but you
want to make a copy that does not require the language card.
Boot the PACKER program and put in the copy disk. Now for a
little thinking.

This program is a bit copier. It has large sections of
code for analysis and operation. It also has large buffers
for reading in data from disk for analysis and storage back
out. The buffers do not need to be copied. They are not
necessary. Programs that have buffers are bit copiers,
communications programs (for modems), word processors,
spelling correctors....etc. You do not need to copy the
buffers of these programs, only the code. Other areas that
need not be copied are the hires pages of APPLE MEMORY for
programs that use the hires pages such as plotters, games
etc.... As mentioned above if the user copies the program at
the correct time the hires pages need not be copied. If you
did not copy a program at the proper time then the hires
pages need to be copied because the program is executing on
restart and the hires page is full of garbage. The hires
pages take up a large block of memory and if you copy them
your binary file is growing rapidly in length. If the
program you copied has a large code and data segment you may
not be able to fit in everything.

For now we want to find all the code areas of the
LOCKSMITH program. The first thing to do when starting
analysis on a program is to use option 7. This will access
all the program stored on disk and do a code and ASCII
search and mark. For more description of this option see the

Page 43

documentation on PACKER. When this option completes the
computer will show you a list of all page it considers valid
program or data. It is recommended to enter a printer slot
number and obtain a hardcopy of this list. With this list
you will proceed to analyze the memory and select the pages
to store to a binary file. The PACKER program shows code
from 0-$20 and $80-SCO. The printout is shown below after
running opion 7 for full mark.

POSSIBLE PAGES:
START...END

00...62 04...20 80...A9 AE...B6 C0...C9 F9,..F9 FB...FF

This is not readily evident from the list output but
let's look at it. There are a couple of broken blocks above
$80 but a large amount of code is shown. The same can be
said about the section between $8-$20. The broken sections
are simply code pages with a little different number of
assembly lines than other pages or small unused areas or
small buffers for that programs use. The means of finding
this out is to use options 2 and 3. Option 2 will load any
section of memory you desire into the buffer. Option 3 will
dissasemble any part of memory. Use this to analyze the
Replay buffer containing parts f te copied program. Note the
memory marked above $BF@@. The Replay copy does not contain
this memory but is shown marked because Locksmith uses that
part of memory. The $CO00 is for keyboard i/o and the S$F800
.+« is for monitor rouines., Your don't have to worry about
copying these sections as all APPLES have them built in.

Now let's look at the marked memory. Load a section of
memory of your Locksmith copy. To do this use option 2 of
the packer program and load tracks $C to $10. This
corresponds to the memory from $7A to $AB. Now use option 3
to look at memory starting at logical $7F@@. To do this you
need to know where the copied memory is stored. You have
just loaded tracks $C to $18 into the Packer program buffer.
The logical pages loaded and their current physical
locations are given across the top of the screen. For this
case the logical page $7A is at physical page $67. Logical
page $7F is at physical page $6C. So to look at (dissasemble
) logical page $7F we would type 3 (to disassemble) then
enter $6C@0 for the address to start at. The memory will be
displayed with mnemonics. Hitting a space bar will continue.
Hitting return will exit. If your continue on to where $6D@0
starts to be displayed (logical $80860) you will see that as
logical $8¢00 is displayed valid program code is shown. From
there up to $BF@9J needs to be copied. The same can be done
for lower memory.

The hardest part of a program to find and include is
the data areas. There is no valid code in these areas and to
dissasemble them will do little good. The PACKER program
will try to detect these areas by analyzing the valid
program code found. The data areas will be accessed by the

Page 44

program code. When PACKER finds a valid program code area it
looks for any 16 bit indexed addressing and marks any pages
found (this addressing mode is used to access data). There
are other addressing modes that access data and the largest
used is called zero page indexed. The PACKER program cannot
easily spot this type, read an assembly manual and use
option 3 for this., PACKER will also mark any pages accessed
by a JSR or JMP, subroutine call or goto statement. Almost
all code and data areas are found. These pages are marked.
This indexed search is where stray pages will show up in the
marked display.

The best procedure to take is to obtain a working
packed file and then if desired try to reduce it further by
taking out the pages not needed. Therefore pack all the
pages you can that are marked. If there are a couple of
skipped pages between 20 or 30 marked pages include them
also. .

The program COMPARE can be used to look for code area,
see the documentation on COMPARE. Also the Replay card can
be used. Make a copy of the program, then using the W
command of the monitor clear selected areas of the memory.
Restart the program. If the program restarts and runs
completely then that area was not crucial to program
operation. If the program crashes you can re-execute the
copied program. Since it takes under 10 seconds to restart
you can iterate very quickly.

For LOCKSMITH the hard code areas were packed into a
binary file. This file was executed and worked. Options 2
and 3 were used to look at the memory and a decision was
made to pack $0-$1F and $80-SBF. The procedure for packing
is below.

In PACKER use option 1 to initialize the STORE. Set
DEST to $08, this value gives us the most room to pack a
file. Set REDEST to $21, looking at te full mark listing we
see that page 21 is not used ,marked, by Packer. Page $21
does not need to be copied so put the RERUN program there.
For the screen setup use text, page 1, all text. Do not
clear the hires screen on startup. The program will return
to the menu. That finishes initialize.

Now we are ready to start packing the sections of
memory we decided to include. For our example we said we
wanted $0-$20 and $80-$BF.

Use option 2 to read in tracks @-4. Then use option 8
to add to the store. Hit 8 and then $6D for start and $85
for end physical addresses. This corresponds to adding the
section $08-$20. We don't include $0-$87 as that is always
done for your, they are important and are packed
automatically. Now hit option 2 and read tracks $0C-$16. Use
option 8 again. Enter $6D for start and $98 for end physical
addresses, This corresponds to adding the section $8D to
SAB. Notice we cannot make one large module of $80-SBF. We
cannot load that large a section into the Packer buffer all
at once. So we make two smaller loads, making it into two
modules. To load the rest hit option 2 and read in tracks
$11 and $12. Use option 8 and enter $67 for start and $7A

Page 45

for ending physical addresses. You have just added the
SAC-$BF section. That completes the packing!

Some short comments on modules and placement. For the
example we just did there was no problem with module
placement. This problem occurrs with programs that are very
large or very segmented. The problem is to place he modules
in sequence such that they don't overwrite one another when
they are being loaded to there correct position in memory.
The Packer program can detect these types of errors and will
inform you of them. The solution is to change the order of
packing a module and to create different size modules. When
we packed Locksmith we packed from lower memory up. We could
just as well pack from higher memory down. The order of
module placement is only important for eliminating problems
with placement. This is covered in more detail in the Packer
program.

Now that we have a packed file use options 9 to list the
packing and parameters. The output would look like:

RUN DESTINATION......$08
RERUN DESTINATION....S$21

CURRENT PAGES IN STORE.
START...END

$00...$07 $08...518 $19...$20 $80...$AB SAC...SBF

To end the session use option A to save the packed file
to disk. PACKER will prompt for a name to store the file
under. Also given is the command to execute this stored
file. ***NOTE THIS COMMAND. YOU MUST USE THE ADDRESS
EXTENSION.*** The command will be :

BRUN 'NAME',AS$XXXX

Where the XXXX is the address to start loading in the
binary file.

After you have saved your file you could type E to
execute the current STORE. This will test your packing. See
option E in PACKER documentation.

Test the file out by execution. If it works you are
ready to build a command file. Run COMMAND FILE CREATE.

The first question asked is for the name of the
command file. To identify these it is recommended to use a
C. prefix. It is not necessary though,

Then the program proceeds to ask you the questions
needed to build the command file. All that is needed can
come off a hardcopy listing if you use option 9 in PACKER
once you have packed the file. Option 9 shows the values of
DEST, REDEST and all the modules in proper order of
inclusion,

The create program asks for these values. The only
other questions are for screen setup. Remember text page 1

Page 46

was used. Once you have entered these parameters insert a
DOS 3.3 disk to store the command file to.

One note....when entering the modules exclude the
lowest module of $0-$08. This is always entered by the
program.

Now you have a command file to pack the program at any

time with minimal user action. See section 14.8 for command
file create.

Page 47

13.0 COMPARE

This program is used for analysis of machine language
programs. It requires two disk drives, each drive will
contain one copy of a Replay disk. This is the fast load
format disk created by the Replay card. The disk in drive 1

is considered the primary copy. The program has two modes of
analysis,

13.1

The first mode will compare two Replay copies of a
program. This is useful for locating areas of program code
and defining the areas of memory usage by the copied
program. If the two memory copies compare the same in an
area then it is likely that area is used by the copied
program, '

The area of memory compared between the copies is
$0000-$BFFF. For each page of memory the number of
differences between the copies is counted and stored. The
user may see a listing of these counts on the screen or have
it sent to the printer. To operate this analysis run the
program COMPARE. When the menu appears put the 2 Replay
copies into the disk drives. Select option 1 to compare the
disks. When the program is finished the menu will come back.
Now select option 3 to display the counts. You may send the
output to the printer by entering the printer slot when
prompted, or hit return for the output to go to the screen.

The output will consist of 12 lines of 16 bytes each.
The page numbers are listed on the left. The count for each
page is listed.

For maximum use the two copies should be seperate,
Don't make both copies from one Run time. This will
randomize the memory contents somewhat so that only the
areas of memory used by the program have zero counts. A zero
count indicates that page was the same for each copy.

- 13.2

The second mode of analysis is for page by page
comparison. This mode, option 4 on the COMPARE program menu,
will ask the user for a page to compare between the copies.
Have the Replay copies in drives 1 and 2. The two copies are
compared for the requested page in a byte by byte sequence.
Any differences are marked by the program.

The computer result is a hex display of the requested
page. The primary copy page is displayed. If there is a
difference between the primary copy and the secondary copy
there will be a star before the hex number is displayed. An
example is given below of the output:

$9C> 05 FA 3E*20 31 25*FF*EF....l2 BYTES

The display will show all 256 ($FF) bytes of the page.

Page 48

They are shown 12 bytes to a line. The example above is for
memory starting at relative byte $8C in a page. Therefore
$xx3C contains $05, $xx0D contains SFA....etc. The value at
$xx0@F is $20 on the prinary copy but is different on the
secondary copy. If the user wants to see what that value is
he could swap disks and perform the analysis for this page
again. Remember the primary copy (the disk in drivel) is the
page displayed.

For other uses of this program see the section on
'EXTRA USES FOR REPLAY'.

14.0 COMMAND FILE CREATE

- ———— - —— - —— ——— —— - > "8 >

There is a program called command file create on your
program disk supplied with the REPLAY card. This program
will create a command file to be used by the PACKING
programs. This file contains all the necessary data for the
PACKER program to access a REPLAY copy disk and pack it into
a binary file. Each copied program is unique and needs a
command file,

When you run command file create the program will
prompt you for the needed data. It will then store the
command file on a DOS3.3 disk.

The first question asked is for the name of the command
file. This is the name that it will be stored under on a DOS
disk. Next it will ask you for DEST. This is the beginning
page address of the binary file you will pack. Enter a two
digit hex number for the page number where the binary file
will begin.

Next the program requests REDEST. This is the address
of the RERUN miniprogram in your binary file. Enter a two
digit hex number representing the page where RERUN will go.

For more information on DEST and REDEST see option 1 on
PACKER program.

Now the program requests which screen setup to build
into the program. The next question asks how many
modules there will be. This is the number of memory modules
excluding the lower 8 pages memory module. That module
is always present.

The program then goes into a loop depending on the
above entered number of modules. It requests the LOGICAL
starting and ending page address of each module. Enter the
addresses as two digit hex numbers.

You would want to use this program command file create
when you have successfuly packed a binary file and know what
pages to pack. A good idea is to use option 9 in PACKER once
you have a file packed. This option gives you DEST, REDEST,
and all modules you packed, and it gives the modules in the

Page 49

correct order,.

If you are building a command file from a parameter
list you will need to pay close attention to the sequence of
modules. Option 9 will give the correct sequence of modules
to load. The parametere lists may only list areas of memory
and not a good sequence of modules.

For instance the parameter list of a program that has
@..1A §20..65 $90..9A cannot he entered directly into a
command file. You must use packer to find a workable
sequence of modules. In this case......

8..1A 20..33 34..65 9¢..9a

The Packer buffer can only hold so much at one time.
Some parameter lists may be in a good form for entry into
command file create. Look for comments on the parameter
lists. '

Once the last module has been entered the program will
prompt for a command file disk and save the file.

When running PACKER this command file can be used to
pack any copy of that particular program.

15.¢ SOFTMOVE

This is a utility program on the Replay utility disk.
With this program you can take an APPLESOFT program under a
protected DOS and move it to standard DOS 3.3. This does not
mean that program will still run as there may be other
imbedded protection mechanisms in the APPLESOFT program
itself.

To use this program execute it from the options menu of
the Replay utility disk or from a prompt with the utility
disk in drive one type:

BRUN SOFTMOVE

It will ask you for the Replay quick load copy disk
that contains the copy of the APPLESOFT program to move to
standard DOS. When the transfer is done the utility
SOFTMOVE will exit to basic. The APPLESOFT program is in
memory and can be saved with the command :

SAVE FILENAME

Page 50
APPENDICES

APPENDIX A
EXTRA USES FOR THE REPLAY CARD

Besides being a program copy system the REPLAY card can
also be used for program analysis. The ability to halt
program execution at any time and have all the restart data
saved for you is a nice utility.

If you wonder how a program works or where the
microprocessor is currently executing code at any time you
can use the REPLAY card. Simply boot the program you wish to
analyze, let it proceed to the point you are interested in
and interupt at that time for copy or analysis.

Most programs on the market these days are in assembly
language. There are some programs that are in APPLESOFT for
sell. To find out where the APPLESOFT program is executing
use the monitor command P for APPLESOFT pointers.

The zero page is used by many programs for variable
storage or for pointers. Machine language programs
especially use the zero page for variable storage. An extra
use for the Replay card is for gameing or variable search,

For an example let us take the game REPTON. This is a
game that uses starships and bombs. Usually there is a
variable somewhere in memory that reflects the curreat
number of each. Wouldn't it be nice to know where that
variable is stored? You could then set any number you like
using the Replay card and the monitor change commands.

To find out its location is not too much trouble. It is
a machine language game and therefore its most used variable
are on the zero page for fast access..etc. First make a copy
of the game as it first begins. The number of ships is 5.
Then using the Replay monitor type the following commands.

9:85 put value 5 at location @

Cccga/1 search page @ for value 5. Remember that the
program copy of pages 0,1 are buffered at $CC@0

When the computer finishes listing all addresses that
contain 5 write them down. There won't be too many. Now
restart the copy and intentionally loose one ship. Stop the
program and type the following monitor commands.

0:04 put value 4 at 0
CC@0/1 search page 8 for value 4

Now write down any addresses that match with the
previous addresses. If there is more than one then you have

two options. One is to change each location and see the
effect (put FF and see if you have 256 ships) or you can

Page 51

iterate one more time and search for 3 this time. You should
only have to do this one more time at most, For us it fell
out the second iteration. The address for ships is at $0061
and bombs is S$@05E. Remember to change the values at $CC61
and S$CCS5E as this is where the zero page is stored for
restart.

The COMPARE program's ability to do comparisons between
two copies is useful for this type application.

PROTECTION ANALYSIS

The example below will demonstrate analysis of a
protection mechanism.

EXAMPLE:

Some programs use a set track for copy protection. This
track may not contain sector data, it could contain only a
set sequence of bytes from 1 to ?? that the program looks
for. Bit copiers have problems copying tracks like this
without help from users. Nybbles Away II has a track/bit
editor for working on a track but without knowing what
sequence of bytes the program expects the user may have a
hard time. The REPLAY card can be used to solve this
problem.

Make a copy of the disk using a bit copier. Then boot
the copied disk. If the disk boots part ways but then hangs
on a given track the program may be looking for a sequence
of bytes and cant find them. This could be a synchronized
copy also. Either way the program does not like this
particular track for some reason. Well....let's find out
why!!!

This time boot the copied disk and right when the
program moves to the track it does not like make a copy with
the REPLAY card. This may necessitate removing the cover of
the disk drive to watch the disk booting a couple of times.
A good calibrated eyeball helps. Watch the read/write arm
and copy the program right when it stops on the track giving
problems,

Now you have a copy of the program as it is reading
that track. Make a note of the program counter and the first
and second return addresses on the stack. To proceed from
here you must run the PACKER program. If the PC value is
above $F800 then the program was using a monitor routine.
Then the address on the stack is probably where the program
will return to. Once you have the location in lower memory
where the calling routine is you want to look at that area.

Use option 2 to load the buffer with memory from around
the above value. Then use option 3 to dissasemble and
analyze the code in that area. Find out where the disk is
being read. The code will look something like below.

Page 52

9009 LDA $C@88,X
0033 BPL S$S0000

This is the code to look at the disk input data latch.
After this code is either storage of the loaded data or
comparison to a set value (such as $D5). This will look
something like:

3003 BPL $0000

g@05 CMP #$D5

@007 BEQ $0020

9339 (PRINT ERROR MESSAGE AND REBOOT)
" ”"n

@929 (ALL OK PROCEED)

Usually the code will look for a sequence of bytes so
there may be several sets of the above code. If the loaded
data does not match then the program will usually print an
error message and reboot or crash. You have two options at
this point.

One is to use the track and bit editor of NYBBLES AWAY
II and make the track look like the program wants. The other
is to modify the code of the program. The first is easy if
not many bytes are checked, if the track contains a
significant amount of data then forget it!!!

The second is more appealing as it does away with the
protection scheme. To do that you need to modify the code as
it resides on disk. This can get mighty tricky and time
consuming. Utilities such as the INSPECTOR and Dr. WATSON
come in handy here. They allow access to the disk on sector
level. The procedure is sometimes not easy and may require a
couple of iterations. Make the copy of the program as
described above. Now what you must do is analyze the code

and find out where an error is detected. A code to look for
is:

JMP $C600

This reboots the disk in drive 1. So any code that
executes that is error code. Some programs as mentioned
above will look for a seguence of bytes. If any one of the
bytes is not correct it will branch to an error code area,
look for this, Also look for any code that prints 'error' or
other error indicators such as a letter in the upper left
corner, Find all entries to such code.

Once you think you have located all the error code and
entries to them you must change that code. The procedure to
try first is to put nop's ($SEA) where the program branches
to that code. In other words change the program so that
there is no entry to the error code. You can change the
program in memory but that won't do you much good. What you
must do is to change the code on the copied disk. Change the
diks that was copied by the bit copiers, not the disk made
by REPLAY. We only used the REPLAY disk to find the code
areas for analysis.

Page 53

Here is the fun part, sometimes it can be quick but
other times it can take some time. A printer is a definite
help. What you must do is to find out where the code you
have analyzed is stored on the bit copied disk. It could be
on almost any track. Use logic!!! If the disk booted track
zero and then checked track one for a sequence of bytes then
the code to find must have come off track zero. But....if
the program loaded several tracks before checking one track
the code you want to find can come off any one or several of
the loaded tracks.

Find that code!!! Load sectors and dissasemble, compare
against the code you want to find. Nybbles Away II has a
nice utility for reading a sector and then disassembling
that sector in memory. When you have a match enter your
changes and save the sector back to disk. Of course if they
are using different address markers you may have to modify
DOS some. Find a source listing of the RWTS DOS code and
there are a few bytes to change that allow different address

markers to be used. That goes into a much deeper realm of
analysis.

So the basic procedure is as follows:

Make a copy of disk with bit copier
Run copy and find track it hangs on
Boot copy and make REPLAY copy when
the trouble track reached.
Analyze the code reading the track
Find all error code and entries to such

Options:
A) Make track fit desired with track editor

B) change code on bit copied disk to ignore all
all error conditions.

APPENDIX B
MULTI ACCESS PROGRAMS

One method to obtain a working backup copy is as
follows. Make a bit copy of the disk. If that copy boots and
runs then you have a backup.

If not you may still be able to have a backup. On the
back of the bit copied disk put a REPLAY copy of the main or
only program. Boot that copy and flip the disk when it is
running. Then when it goes back to disk it goes to the bit
copied disk that won't boot. The format may have been copied
good enough to allow access by the main program,

If this doesn't work try finding the code that accesses
the disk repeatedly. Some programs only access the master
disk to check for a copy, no data is loaded. Find the code

Page 54

using techniques described above and branch around it. Even
if a few bytes are loaded you might want to simply modify
the code around that area to reset those bytes and then
continue. See the example above for removing copy protection
from a disk. This requires a good knowledge of assembly
language.

APPENDIX C
DOS COMPARISONS

Many programs use a patched copy of DOS 3.3 for their
protection mechanism. Their verison of DOS is very close to
normal but has changes to it so that normal DOS 3.3 cannot
be used to access their disk.

Compare is a good program to analyze the difference
between standard DOS 3.3 and the new patched DOS. First boot
the disk with the non-standard DOS and make a copy with the
Replay card. Now boot a standard DOS 3.3 disk such as the
system master and make another copy with the Replay card.

, Now use the Compare program on the two copies. The
Compare program will point out the differences betwee the
two versions.

A use for this analysis is for Packing. If you want to
pack a program that uses a patched version of DOS then all
you need to copy (for DOS, *NOT* the whole program) would be
the patched areas. When the packed program is executed a
standard version of DOS is in the machine. The patched areas
could simply be overlayed onto the copy of DOS present now.
This saves copying the entire DOS which is $28 pages long.

APPENDIX D
HEX NUMBER SYSTEM

The number system everyone uses normally is base 10.
The computer uses binary numbers, which is base 2. The
binary numbers can be read easier in base 16 which is hex.
For an example of each see below.

BASE 16

12345678910 11 1213 14 15
BASE 16

123456789 06a 0B ¢C gD OE OF

In hex you use alphabet letters to count once you get
past 9.

BASE 10 BASE2 BASE 16

decimal binary hex
29 0000 1001 @9
14 0009 1110 gE
24 0001 1000 18

32 0010 0000 20

Page 55

In base 16 you count up to 15 before going to a second
digit, ¢ 1...E F 10. In base 1@ you count up to 9 before
going to a second digit , ¢ 1,..8 9 14.

In base 10 every digit position is a power of ten.
Starting with 14 to the 0=1.

Take the number 123,
times 18 to the 8 = 3

times 10 to the 1 =20
times 10 to the 2 =100

Ll \SH V]

total=123
It is the same with hex. every digit is a power of 16.
Take the number 123 in hex. Translate to decimal,
times 16 to the @ = 3

times 16 to the 1 =32
times 16 to the 2 =256

N W

total=291 decimal

In the document all numbers preceded by a § are given
in hex.

APPENDIX E
REPLAY TRACK REFERENCE

‘The tracks on a REPLAY disk contain the memory of the
APPLE at time of copy. The reference table below will show
you what pages are stored where.

Track storage all numbers in hex.

TRK PAGES TRK PAGES

60 02-0B 0B 70-79

g1 @8Cc-15 6C 7a-83 .
62 16-1F 6D 84-8D

03 20-29 0E 8E-97

04 2a-33 6F 98-21

85 34-3D 16 A2-AB

06 3E-47 11 AC-B5

@7 48-51 12 B6-BF

#8 52-5B 13 @,1,RESTART
89 5C-65

aa 66-6F

"Page 56

APPENDIX F
APPLE LANGUAGE CARD OWNERS

Owners of Replay that have the APPLE language (ram)
card must make a slight modification to the language card.
Follow the procedure below:

1) With power off remove the ram card.
2) Locate the integrated circuit labelled 741s20.
The diagram below shows its location:

i

=
J_J

3) Remove the chip from its socket carefully. Please note

the direction of the notch on the chip. When you reinsert

the chip later, make sure the notch on the chip is in the

same direction.

4) Bend pin 6 out from the chip so that when you reinsert
the chip that pin will not go into the socket.

5) Reinsert the chip and plug the ram card back into the
APPLE.

I

If your APPLE does not have an autostart rom (rom is
autostart if disk turns on when you turn power on), then you
need to swap out the two $F8 roms. To do this simply unplug
the rom $F8 on the mother board and exchange it with the rom
on the ram board.

Your APPLE will operate exactly the same as before,
execpt now it will not interfere with the Replay card.

APPENDIX G
ASSEMBLY EXAMPLES

The next few pages give examples of assembly language
code listed using the APPLE disassembler. They are commented
as to what to look for.

1000-
1003-
1006~
1008-
100B-
100E-
1011-
1014~
1016~
1018~
101B-
101E~
1021~
1024~
1026-
1029~
102B-
102E-
1030~
1033~
*

#5000L

5000~
5001~
5002-
5003-
5004~
5005-
5006~

5008~
5009~
500A-~
500B-~
500C-
500D~
500E-
500F -~
5210~
5G611-
53i2=-

5013

8D
20
BO
20
AE
4c
20
A9
A2
20
20
uc
20
A9
8D
A9
8D
A9
8D
A9

00
00
00
00
00
00
00
00
00
00
00
00
00
00
co
00
00
00
00
0o

2C
3E
E3
6C
22
5B
58
1F
22
FD
E1
3C

67
19

16
20
17
8D

17
14

12
17
OF
FC

16
16
0cC
FC
17
17

17

STA
JSR
BCs
JSR
LDX
JMP
JSR
LDA
LDX
JSR
JSR
JMP
JSR
LDA
STA
Lpa
STA
LDA
STA
LDA

BRK
BRK
BRK
BRK
BRK
BRK
BRK
BRK
BRK
BRK
BRK
BRK
BRK
BRK
BRK
BRK
BRK
BRK
BRK
BRK

$172C
$T143E
$0FEB
$126C
$1722
$0F5B
$FCS3
#$1F

#$22

$16FD
$16E1
$0C3C
$FC58
#$67

$1719
#3$05

$1716
#3$20

$1717
#$8D

1000L

P
age 57

Here is an example of normal program
code. Notice no ?? , every line has
an assembly mnemonic on the right.

53 decimal bytes were used for 20
lines giving roughly 100 lines of code
per 256 byte page. That is $64 bytes
of code for $FF byte page. With the
sensitivity set above $64 hex this
page would be marked if the rest of
the page was similiar.

Example of memory all zeroes. Every
line is BRK which is the assembly
mnemonic for 00 hex byte. Not marked.

6000L

6000- FF
6001~ FF
6002~ FF
6003~ FF
6004~ FF
6005~ FF
6006~ FF
6007~ FF
6008~ FF
6009- FF
600A- FF
600B- FF
600C- FF
600D~ FF
600E- FF
600F- FF
6010~ FF
6011~ FF
6012~ FF
6013~ FF
*
JCALL -151
*A900L

A900- 55
A902- 56
A904- 52
A905- 49
A907- D9
"90A- 70
~90C~ 70
A90E- 70
A910~ 70
A912- 70
A9 14~ 70
A916- 70
A918- 70
A91A- 0o
A91B- 22
A91C~ 06
AG1E- T4
A91F- 22
A920- 06
o4

Ag22-
#

CE
us

46
00
A0
A1
AQ
20
20
20
20
60

20

22

21

27?2
222
277
277
QY
2?7
5%
?22?
?2??
22?
2?7
?227?
22?2
HUH
2272
2?72
7Y
?272?
N
?2?7?

EOR
LSR
???
EOR
CMP
BVS
BVS
BVS
BVS
BVS
BVS
BVS
BVS
BRK
?2??
ASL
227
72?72
ASL
2?7

$CE,X
$45,X

#3146
$2100,Y
$ABAC
$A8AF
$A8BO
$A932
$A934
$A936
$A938
$A97A

$20

$22

Page 58

Example of memory all hex $FF. Notice
the large number of ?? meaning the
APPLE disassembler cannot decode

this section. $FF is not a valid
opcode instruction so the disassembler
prints ??

Not program code. Note large amount of
repeating BVS instruction. Several

??? are present, If a lot of ??? are
present then the section is probably
not valid code. Use the ASCII search

or display to see if there are menus

or prompts here. Also several BRK are
present then code is probably not valid.

A950L

A950-
A951-
A953-
A955-
A956-
A957-
A95A~
A95B-
A95C~
AY5D-
A95F -
A960-
AG61-
A963-
A96 4~
A965-
A966~-
A967-
A968-
A969-

BDOOL

BDoO-
BDO2-~-
BDO4-
BD06-
BD09-
BDOB-
BDOE-
BD10-
BD12-
BD13~
BD15-
BD17-
BD19-
BD1A-
BD1B-
BD1D~
BD1E-
ED1F-
BD20-
bBu22-

02
01
AQ
00
00
FE
00
02
00
01
07

01
FF
7F
00
00
FF
7F
00

84
85
A0
8C
Ao
8cC
AO
B1
AA
A0Q
D1
Fo
8A
48
B1
AA
68
48
91
BD

Co
90

00 01

00

00

48
49
02
F8 06
o4
F8 04
01
48

OF

Ly
1B

48

48
8E CO

?2?7?
ORA
LDY
BRK
BRK
INC
BRK
7?2
BRK
ORA
?27??
BRK
ORA
?2?2?
222
BRK
BRK
74y
86y
BRK

STY
STA
LDY
STY
LDY
STY
LDY
LDA
TAX
LDY
CMP
BEQ
TXA
PHA
LDA
TAX
PLA
PHA
STA
LDA

($Co0,X)
#$90

$0100,X

($00,X)

($00,X)

$48

$49
#$02
$06F8
#3044
$0U4F38
#$01
($48),Y

#$0F

($48),Y
$BD34

($48),Y

($48),Y
$CO8E,X

Pége 59

Not program code. Note several 797
ard many BRK

Good program area, 35 decimal bytes
gives 20 lines of code. This comes out
to 146 lines of code per 256 byte page.
With sensitivity set at¥92 or above th!
page would be marked if the rest of the
page was similiar to this,

Page 50

1593L
1393- 20 6C BA JSR $8A6C Tricky example of good code. There are
1396- 4C 44 14 JMP $1444 SO
1399- 20 6F 8F JSR $8FGF many ?7? in here but the rest of the
139C~ 97 227 printout looks good. This is ar example
139D~ OF 7?7 A . .

139E- 20 72 8C ISR $8C72 of data passing information to a
13A1- 20 DF 8aA JSR $8ADF subroutine, The address of the Jata
13A4- 20 9B BF JSR $8F9B i d i
1347- F5 04 . $04.X is on t?e stack, The data passed is
13A9- 20 79 84 JSR $8A79 not valid instruction opcodes. The
134C~ A9 01 LbAa #$01 subroutine uses the data and then
13AE- 8D A9 04 STA $044A9 . . .
13B1- uC 44 14 JMP $1444 returns to the calling rautine with
;333‘ gg 6F 8F ;ﬁg $8F6F an adjustment for the data.
136 OF 299 There are 48 bytes used giving
13B9- 20 72 8C JSR $8C72 108 lines of code per 256 byte page.
13BC- 20 DF 8aA JSR $8ADF s Ay
13BF-= 20 6F 8F JSR $8F6F Any sensitivity above $68 would mark
13C2- AB ?2?2? this page.
#*

Page 61

APPENDIX H

ANALYSIS PROGRAM FOR REPLAY II CARD

There is a new program on the Replay utility disk. It
is called RamStep. This program will allow machine language
programs to be traced by the user. Some uses are:

Analyze program operation/flow

Locate areas of program by tracing

Detect bugs in assembled code

Dissasemble memory with forwards or backwords scroll
Locate variables in memory by tracing program

Only quick load copies of programs can be used with
RamStep. To obtain a quick load copy boot the program you
want to analyze, then using the Replay card make a copy.
This is the quick load copy.

To execute the analysis program choose the option
RamStep from the Replay utility menu. You must have a Ram
- card in the Apple to use this program. Once the program
starts the upper ten lines of the screen will have the menu.

On the top of the screen is one line giving the
important register contents and stack contents.

To load a program for analysis use option L. You must
use quick load copy disks.

Once the program is loaded in using the L option the
user can dissasemble, make pathces with the mini-assembler
or do a step and trace,

The assembler is similiar to the APPLE mini-assembler.
To exit the assembler type:

SEBOOG

You will return to the main menu.

The dissasembler will prompt you for an address to
start at. Enter the address in Hex. The top ten lines will

then contain a disassembly of code at that address. At that
time the following keys will function:

(space) will disassemble next 1@ lines

-> will disassemble next 5 lines and scroll up
<- will back up about 5 lines and dissasemble
forward

(return) exit disasemble routine

The M option will take you to the Replay monitor. It is
a monitor very similiar to Apple monitor. The entry points
to the important routines are the same as in the Apple
monitor. There are some improvements though.

Now a memory list such as 100.20¢ will display hex and

Page 62

ascii,

The step and trace routines have been rewritten to
allow transparency. You can now step or trace a program and
maintain memory. The new commands are:

#s Step a program, show instruction mnemonics and
registers

#T Trace a program continuously

#R Trace a program and restore the video

The difference between T and R is the video text page.
When you are working with RamStep the upper ten lines of
text page are remove to safety. Some programs use that
memory for code. If you trace a program and it attempts to
execute in the video memory you must put back that memory as
at time of interupt. Therefore the R command will do this.
You cannot see a continuous mnemonic disassembly this way,
as with the T command, but you can tell where the program
is executing (more in a minute).

Once the you put the program in T or R mode you can
view any one of 3 screens, textl/hiresl/hires2. There are
three keys that control this.

If you hit a (;) the hiresl page will display, hit a
(<=) for hires2 and hit a (->) for text 1.

That way you can watch the disassembly mnemonics on textl
and watch graphics on hires in continuous operation.

To stop the execution type a

(ctrl) E control E

This will exit you to the Replay monitor. If you were
in R mode the memory locatons $3A $3B contain the PC at time
of exit. The pages @,1 are stored at $DCO@ and $DD@F for the
ram card version of ramstep. -

There is an eprom version of this analysis. The eprom
can replace the copy eprom that comes with the Replay card.
Then the user can stop a program at any point, analyze as
discussed above, and restart to look at another time. The
user can stop/analyze/restart continuously.

If you wish to order this eprom send $2¢0 and request
the:

Replay ML utility eprom.

The analysis eprom has the same commands as the step
and trace ram card program. Its reentry point from the
assembler or monitor is $F@8l., The pages @,1 are stored at
$CCBO and $CDOY for the eprom version.

Page 63
APPENDIX I
Screen Print

This program will allow users to load in and print any

of the screens that the Apple displays. The procedure is as
follows.

1.
2.

Make a quick load copy at the point you
want to dump the screens.

Run Packer, option 4 on the Replay utility
disk.

Once Packer is running hit C for command
file pack

For textl or 2 enter:

C.TEXT1&2.CAPTURE

For Hires 1 or 2 enter:

C.HIRES1&2.CAPTURE

The auto pack file will be loaded from

the Replay utility disk.

Insert the quick load copy you made of your
program and hit return. :

When finished packing hit return and

use option A to save the packed file

Now choose option B on the Replay

utility disk and it will prompt you.

The dump program is in basic and easily modifiable. It

assumes a Dumpling type interface. It can be changed to any
type interface or driver easily.

Page64'

APPENDIX J
Apple I1 and //e Monitor Differences

The Apple II and //e are very similiar so that programs
written for the II can be run on the //e and to a limited
extent the other way around.

There are some differences though that need to be
realized. The major areas are shown below.

//e and I1 monitor rom differences (SF800 rom)
//e expansion roms at S$Cxxx
80 column software

//e softswitches

Because of these differences programs copied on one
machine may not run on the other. The biggest problem is
generally the monitor roms. The //e has an expanded monitor
rom that uses the $Cxxx range and the main monitor routines
are different. The entry points for the main routines have

been kept the same but from there on the code could be
changed.

This brings a problem in when a program is interupted
during access to the monitor rom bios routines. If the
program is in the middle of a routine and the user attempts
to move it from say a II to a //e it is not guaranteed the
program will restart. In the //e the code is most likely
different or shifted.

The solution to this is to only copy the program when
it is executing in lower memory. That way it will most
likely transfer to the other machine, since the main bios
routine entry points are the same. To do this, stop the
program and look at the PC in the Replay monitor. Only copy
the program if the PC is below S$SF804.

~ One of the other problem areas is the expansion rom in
the $Cxxx range. This is related to the above discussion. If
the PC is in the range of $Cxxx then don't copy it if you

are moving from the //e to the II. The II does not have the
expansion rom.

The //e softswitches are many, some programs depend
heavily on their presence and use. Others don't use any of
the new softswitches. There is no clear cut solution for
this as it is hardware dependent.

i K.

Page 955

If there is 83 column software being used the transfer
from machine to machine is a problem. Especially so if the
user has an 88 column card in the II and is moving to the
extended 80 column Apple video card. They are not
functionally the same. The softswitches again come into the
picture for control.

These are all problem areas and possible help when
transferring from 1I <---> //e. If you have any further
questions please call for technical.

APPENDIX K

FRANKLIN USERS

The Replay card can be used on the Franklin computer
but there are some limitations. First and foremost is that
only 48k programs can be copied. This is due to the way the
Franklin has the upper 16k disabled.

To use the Replay card the user must disable the upper
16k of memory so the Replay card can function. To do this a
jumper must be switched from one pin to another on the
Franklin mothrboard. This jumper is documented in the
Franklin manual for disable of upper 1l6k. It is located in
the middle of the top row of ram chips on the Franklin
motherboard.

The page in the Franklin manual is 5-9. The location on
the motherboard is the third rom from the left. There is a ro
row of chips on the motherboard that are much larger than all
the other chips, these are the rom chips.

ADDENDUM TO REPLAY DOCUMENTATION
COMPRESSION OF 48/64K PROGRAMS

*x**** 70 USE THE COMPRESS PROGRAM YOU NEED A QUICK LOAD
x** COPY OF THE PROGRAM YOU WISH TO PACK. WE RECOMMEND
****%x% EXECUTING CLEARMEM BEFORE BOOTING THE ORIGINAL DISK
x%* AND MAKING A QUICK LOAD COPY. CLEARMEM WILL SET
x*x* ALI, MEMORY TO ZERO WHICH IMPROVES THE ANALYSIS
#x#*x** ARJLITY TO REJECT UNEEDED MEMORY.

There is a program on your disk called 'COMPRESS'.
This program is an automatic compression program for 48k or
64k programs. It will read the quick load copy that you make
, along with the Dos binary 3.3 file created for 64k copies,
and analyze the copy to compress its size. Not all programs
can be compressed but many can. Examples of some programs
which are difficult to compress are Choplifter and Repton.
These programs are 48k programs that use an immense amount
of memory. The shape tables for the different objects take
up a lot room.

Examples of programs that can be compressed are word
processors, modem programs, bit copiers, these
programs may operate all over memory but they have large
buffers which can be eliminated.

To operate the program you will need these items:

Disk in drive 1: Quick load copy of lower 48k made
by Replay card.

Disk in drive 2: Dos 3.3 disk with 260 sectors free
If 64k copy:
The FILE.RAM created by Replay
utility disk of upper 16k ram.

Boot a Dos 3.3 disk and arrange the disks and drives
as shown below. The disk in drive 2 should be a Dos 3.3 disk
with at least 260 sectors free.

To create the disk used in drive 2 a user could:
Initialize a new disk.

If 64k copy use FID , or other, to move the FILE.RAM
over to the new disk.
Remember the FILE.RAM is the binary file created by Replay
Utility disk option 5 when making a 64k copy. It is the
upper 16k ram.

Page 2

HOW TO USE COMPRESS

Boot the Replay utility disk and choose the option
for the 'COMPRESS' program. The program will be loaded in
and executed. There is a section at the beginning which
allows user override or user input. The default settings are
in place. If you don't want to change anything hit return.
The different selections are documented following this brief
example.

Two parameters that should be thought about each
time are the QUICK LOAD COPY (48k) and USE APPLESOFT. The
default setting is for 48k, if you have a 64k copy then type
Q and COMPRESS will work with 64k. Applesoft pointers are
not used with the default setting. If you think you have an
Applesoft program then hit A to turn on use of Applesoft
pointers.

When you hit Return to continue, the program will
prompt for the correct disk setup. If it is a 64k copy the
program will prompt you for the name of the 16k ram file
created by option 5. Enter the full name of the file with
the .RAM extension. After analysis the program will prompt
you for a file name to save the compressed file under. Enter
any name.

When the compressed file has been saved to disk the
packing program will tell you if a ram card is needed to
execute or not. To execute the file simply type :

BRUN FILENAME

Two files are created, the second with a .REP
extension. They are standard Dos 3.3 and can be put on a
hard disk.

PARAMETER EXPLANATION
A brief explanation of each setting is given here:

R) STOP AFTER ANALYSIS

This is to allow user viewing of the pages marked for
copying and the different marking results. If this is Y for
Yes then the program will halt after analysis to allow user
input. See the following section on Viewing Marks. If this

is N the program will continue straight in to pack the
marked pages.

Q) QUICK LOAD COPY
FULL COPY

This indicates that the copy to be packed is a 48k quick
load copy only or that it is a full 64k copy. If Y only is
selected 48k will be analyzed and packed, Full copy will
show N. If Quick load copy shows N and the Full copy shows Y
then 64k will be analyzed and packed. The FILE.RAM is then
needed on the disk in drive 2.

Page 2

HOW TO USE COMPRESS

Boot the Replay utility disk and choose the option
for the 'COMPRESS' program. The program will be loaded in
and executed. There is a section at the beginning which
allows user override or user input. The default settings are
in place. If you don't want to change anything hit return.
The different selections are documented following this brief
example.

Two parameters that should be thought about each
time are the QUICK LOAD COPY (48k) and USE APPLESOFT. The
default setting is for 48k, if you have a 64k copy then type
Q and COMPRESS will work with 64k. Applesoft pointers are
not used with the default setting. If you think you have an
Applesoft program then hit A to turn on use of Applesoft
pointers.

When you hit Return to continue, the program will
prompt for the correct disk setup. If it is a 64k copy the
program will prompt you for the name of the 16k ram file
created by option 5. Enter the full name of the file with
the .RAM extension. After analysis the program will prompt
you for a file name to save the compressed file under. Enter
any name.

When the compressed file has been saved to disk the
packing program will tell you if a ram card is needed to
execute or not. To execute the file simply type :

BRUN FILENAME

Two files are created, the second with a .REP
extension. They are standard Dos 3.3 and can be put on a
hard disk.

PARAMETER EXPLANATION
A brief explanation of each setting is given here:

R) STOP AFTER ANALYSIS

This is to allow user viewing of the pages marked for
copying and the different marking results. If this is Y for
Yes then the program will halt after analysis to allow user
input. See the following section on Viewing Marks. If this

is N the program will continue straight in to pack the
marked pages.

Q) QUICK LOAD COPY
FULL COPY

This indicates that the copy to be packed is a 48k quick
load copy only or that it is a full 64k copy. If Y only is
selected 48k will be analyzed and packed, Full copy will
show N. If Quick load copy shows N and the Full copy shows Y
then 64k will be analyzed and packed. The FILE.RAM is then
needed on the disk in drive 2.

Page 3

P) SAVE HIRES 1 PRIMARY
This allows the user to specify that hires 1 is to
always be packed.

S) SAVE HIRES 2 SECONDARY
This allows the user to specify that hires 2 is to
always be packed.

D) USE DOS IN MEMORY

This is used with programs that use a patched version
of Dos for their operating system. The Dos that is in memory
when the compressed file is Brunned is preserved and patched
with any differences to the copy. The benefit is that a
smaller copy is needed. Only the patches are copied. The Dos
in memory at Analysis time is used as the normal Dos, be
sure to use that Dos on the disk that contains the
compressed file if the D option is set to Y.

A) USE APPLESOFT POINTERS .

If you know or suspect the program is in Applesoft set
this to Y. Then the Applesoft pointers are used to mark
memory. Don't forget about the SOFTMOVE program on the
Replay Utility disk. Softmove will move an Applesoft program
from a copy into normal Dos 3.3. It will not move binary
programs called by Applesoft.

The next three lines are for marking sensitivities.
M) CODE MARK SENSITIVITY >90

This is used to find program code areas. See option 6
of the Packer program for more detail.

I) INDEX MARK SENSITIVITY >80

This is the sensitivity level where indexed marking
will occur. The higher the number the more pages will be
analyzed for indexing, JSR JMP etc.

T) TEXT MARK SENSITIVITY >B#

This is used to find areas containing ASCII which is
used in menu's or prompts. See option 3 of the Packer
program for more detail.

E) EXTRA PAGES/SECTION >02

This value is the number of pages that are added after
a code segment ends. The program in memory can be considered
as several code segments spaced around memory. After each
segment this number of extra pages will be added to allow
for spillover of program code or data.

Page 4

VIEWING MARKS

One very useful tool for the user is the override or
user input area. If the Stop after analysis is set to Y then
the user can view the analysis results and have editing
capability.

Once analysis is done the results are displayed.
There are several informative tools. First displayed is the
Memory Map containing the mark counts. These are the
dissasembly marks found by the code search section.

All inverse pages are marked and will be packed. The
total number of free pages is shown below the marked pages.
This is called the composite mark page. It is made up from
several sources. The first is dissasembly analysis, then
-indexing , JSR JMP Page referencing...etc.

Other analysis can be viewed by typing the numbers
1-9. The menu below will appear:

(MARKED SHOWN)
(MARKED SHOWN)
(MARKED SHOWN)

P> PACK R> RESTART D> DISSASEMBLY

1 ASSMBLY 2 ONEBYTE 3 DOS COMPARE

4 INDEXED 5 ENTER # 6 NEW SENSE LVL
7 COMPOSITE 8 APLSOFT 9 USE DOS 2>

Let's take them one at a time.

1 ASSMBLY

Show in inverse all pages found containing assembly
code. This is dependent on Mark sensitivity. The current
Mark level is shown.

2 ONEBYTE

Show in inverse all pages that have a single byte value
all through the page.

3 DOS COMPARE

In the memory range $9A to $BF show in inverse all
pages different from the Dos currently in memory.

4 INDEXED

Show all pages in inverse that are referenced to by
indexed registers, JSR's JMP's.

Page 5

5 ENTER #

This provides user override capability. The user is
prompted for a page #, not a full address., Flip the status
of the page entered. If it was marked, unmark it, if it
wasn't marked then mark it. Continue asking for more pages
until a carriage return is entered with no page #.

6 NEW SENSE LVL

Prompt user for new sense level. This will change the
Assembly mark and thus the Composit mark but *not* the
indexed mark. The indexed mark is done at disk read time.

7 COMPOSIT MARK
Show the Composit mark page.

8 APLSOFT

Using the Applesoft pointers show where the program and
variables reside in memory. This does *not* alter the
composite mark, it only shows where the Applesoft pointers
are showing a program. The user must R> restart and change
the Applesoft parm at the start to alter a composite mark.

9 USE DOS

Flip the status of the USE DOS parm.

Above the 1-9 menu options are 3 letter options. The
second letter R will take the user back to the beginning of
“the program where he can alter the setup parameters and
re-analyze the copy. :

The first letter P is to continue with the Packing.
The program will proceed using the composite mark to pack
the program.

The final letter D is to view sections of the copied
program. The user will be prompted for the FULL address to
dissasemble. That section of memory will be loaded into a
buffer and the dissasembly done. A full screen is shown. The
A key will take the user back one page, the S key will go
forward one page. The buffer only has 20 pages at a time
valid, it starts at $2000 hex.

Page 6

PROBLEMS

File does not work on compression.

P R S L T T ¥ T T T T L T L T L Py

This is due to not enough memory being marked and
copied. Go back and run Compress again. This time alter the
setup values. To make the Compression analysis mark more
pages ,and thus include them in the packed file, change all
or some of the values below:

CODE MARK SENSITIVITY
INDEX MARK SENSITIVITY
TEXT MARK SENSITIVITY
EXTRA PAGES/SECTION

RAISE VALUE
RAISE VALUE
LOWER VALUE
RAISE VALUE

VVVyvV

The limit will be the number of free pages left after
marking. The Compress program needs 5¢ decimal ($32 hex)
pages free to build the Compressed files. The number of free

pages are given in the VIEWING MARKS area when the composite
mark is shown.

Games have shapes fuzzy or not there.

The shapes in games are stored as data tables. The
locations in memory of the data tables are difficult to
completely locate. The Compress program finds most of these
by the index mark. To try and mark more shape or data areas
raise the index mark sensitivity and/or the extra
pages/section values.

Compress program cannot locate a space for restart program

The restart program built into the compressed file
needs to be in the lower 48k memory space. If all of that
area is marked this error will occurr. Use less sensitive
values in analysis to mark fewer pages, or... with the user
override in the viewing mark section free some pages
manually. Don't forget the dissasembly option can be used to
view the memory being compressed.

Page 7
COMPRESS.UTIL PROGRAM

When the Compress program is run it generates the
compressed program binary files that are used to replace the
qguick load copy. One other file is generated called PTEST.
This contains the packing information derived from analysis.

The program Compress.Util can be used to load in this
short file and bypass the analysis going directly to Viewing
Mark. The benefit of this is that a user could analyze a
program, then pack using the results and then execute the
packed file. If the packed file did not execute fully he
could run Compress.Util and load in the Ptest file created.
Then change the mark sensitivity or use the override to
manually mark. The program is then packed again based on the
new marking. Ptest is saved out with the new modifications.

The user could make several passes this way without the
necessity of analyzing the 48k copy each time. The Ptest
file could be saved to another disk and renamed for later
work. : ‘

AN

APPLE //E USERS WITH EXTENDED 80 COLUMN CARD
(64K ON 88 COLUMN CARD)

A new program on the Replay utility disk is called
AUXMEM. It will copy
the first part of the auxiliary memory. This memory is on
the 8@ column board. Users with this board and who want to
copy programs like Visicalc //e or Applewriter //e can use
this program, ,

The user can copy the most used part of the extra
64k memory with this program., To run this program boot the
Replay utility disk and type Q to obtain an Applesoft
prompt. Then type

BRUN AUXMEM

Insert a Dos 3.3 disk to save the binary file to.
You will name it. The program will then put a binary file on
the disk contaning a copy of the extra memory.

As an example of use let us look at Applewriter //e
(A program by Apple Computer Co.). To copy this program the
user would follow the procedures for 64k copy as in the
Replay manual, making the lower 48k quick load copy then the
upper 16k ram copy. After the user has made the 16k upper
ram copy and has an Applesoft (]) prompt he would type:

BRUN AUXMEM

Make sure the Replay utiltity disk is in the drive.
The Auxmem program will prompt you to put in the Dos 3.3
disk , use the same one the upper 16k is saved on. Next the
user names the file to be saved on the disk, let's call it
Aux//e. When finished you have 3 seperate pieces of memory.
The quick load 48k, the upper 16k ram and the Extram memory
file just created. You can execute the copy in this order:

Brun (filé created with auxmem) Aux//e
This puts back the aux memory and returns.

Brun (file created with option 5, upper 16k ram)
This loads up the ram card space.

Next the user is prompted to put in the quick load copy, hit
replay button and type E. The program should restart.

Alternatively the user can use the compress program
to combine the quick load copy and the upper 16k ram into
one binary file execution. See the section on Compress. This
eliminates the need for the Replay Card to execute.

Let's say the user has used compress on the
Applewriter //e and has a binary file (2) called App//e.

Page 2

Then to execute the program he needs to load in the aux
memory and then Brun App//e. This can be done with one
command using an exec file command. There is a program

called EXECMAKER that will do this. For our example you
would :

BRUN EXECMAKER

type AUX//E (return) causes auxmem to load
type APP//E (return) loads normal mem
(return) no more files
type Applewriter //E Name of exec file

Then to execute Applewriter //E without Replay card
the user types:

EXEC Applewriter //E.

s -

